Understanding the Effects of Anode Catalyst Conductivity and Loading on Catalyst Layer Utilization and Performance for Anion Exchange Membrane Water Electrolysis

被引:3
|
作者
Kreider, Melissa E. [1 ]
Yu, Haoran [2 ]
Osmieri, Luigi [3 ]
Parimuha, Makenzie R. [1 ]
Reeves, Kimberly S. [2 ]
Marin, Daniela H. [4 ,5 ]
Hannagan, Ryan T. [4 ,5 ]
Volk, Emily K. [6 ]
Jaramillo, Thomas F. [4 ,5 ]
Young, James L. [1 ]
Zelenay, Piotr [3 ]
Alia, Shaun M. [1 ]
机构
[1] Chem & Nanosci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA
[3] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA
[4] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[5] SUNCAT Ctr Interface Sci & Catalysis, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[6] Colorado Sch Mines, Adv Energy Syst Grad Program, Golden, CO 80401 USA
来源
ACS CATALYSIS | 2024年 / 14卷 / 14期
基金
美国国家科学基金会;
关键词
water electrolysis; oxygenevolution reaction; anion exchange membrane; electrocatalysis; catalystlayer; HYDROGEN; MASS;
D O I
10.1021/acscatal.4c02932
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anion exchange membrane water electrolysis (AEMWE) is a promising technology to produce hydrogen from low-cost, renewable power sources. Recently, the efficiency and durability of AEMWE have improved significantly due to advances in the anion exchange polymers and catalysts. To achieve performances and lifetimes competitive with proton exchange membrane or liquid alkaline electrolyzers, however, improvements in the integration of materials into the membrane electrode assembly (MEA) are needed. In particular, the integration of the oxygen evolution reaction (OER) catalyst, ionomer, and transport layer in the anode catalyst layer has significant impacts on catalyst utilization and voltage losses due to the transport of gases, hydroxide ions, and electrons within the anode. This study investigates the effects of the properties of the OER catalyst and the catalyst layer morphology on performance. Using cross-sectional electron microscopy and in-plane conductivity measurements for four PGM-free catalysts, we determine the catalyst layer thickness, uniformity, and electronic conductivity and further use a transmission line model to relate these properties to the catalyst layer resistance and utilization. We find that increased loading is beneficial for catalysts with high electronic conductivity and uniform catalyst layers, resulting in up to 55% increase in current density at 2 V due to decreased kinetic and catalyst layer resistance losses, while for catalysts with lower conductivity and/or less uniform catalyst layers, there is minimal impact. This work provides important insights into the role of catalyst layer properties beyond intrinsic catalyst activity in AEMWE performance.
引用
收藏
页码:10806 / 10819
页数:14
相关论文
共 50 条
  • [41] How the Porous Transport Layer Interface Affects Catalyst Utilization and Performance in Polymer Electrolyte Water Electrolysis
    Weber, Carl Cesar
    Wrubel, Jacob A.
    Gubler, Lorenz
    Bender, Guido
    De Angelis, Salvatore
    Buchi, Felix N.
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (29) : 34750 - 34763
  • [42] High-performance anion-exchange membrane water electrolysis
    Park, Ji Eun
    Kang, Sun Young
    Oh, Seung-Hyeon
    Kim, Jong Kwan
    Lim, Myung Su
    Ahn, Chi-Yeong
    Cho, Yong-Hun
    Sung, Yung-Eun
    ELECTROCHIMICA ACTA, 2019, 295 : 99 - 106
  • [43] Numerical Study of the Impact of Two-Phase Flow in the Anode Catalyst Layer on the Performance of Proton Exchange Membrane Water Electrolysers
    Moore, M.
    Mandal, M.
    Kosakian, A.
    Secanell, M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (04)
  • [44] In Search of Lost Iridium: Quantification of Anode Catalyst Layer Dissolution in Proton Exchange Membrane Water Electrolyzers
    Milosevic, Maja
    Boehm, Thomas
    Koerner, Andreas
    Bierling, Markus
    Winkelmann, Leonard
    Ehelebe, Konrad
    Hutzler, Andreas
    Suermann, Michel
    Thiele, Simon
    Cherevko, Serhiy
    ACS ENERGY LETTERS, 2023, 8 (06) : 2682 - 2688
  • [45] Optimization of anode porous transport layer in proton exchange membrane water electrolysis
    Xu, Guizhi
    Du, Xiaoze
    Que, Liulin
    Zhang, Liang
    Li, Jun
    Ye, Dingding
    Song, Jie
    Gao, Jie
    APPLIED THERMAL ENGINEERING, 2025, 263
  • [46] Interfacial and Vacancy Engineering on 3D-Interlocked Anode Catalyst Layer for Achieving Ultralow Voltage in Anion Exchange Membrane Water Electrolyzer
    Wan, Lei
    Lin, Dongcheng
    Liu, Jing
    Xu, Ziang
    Xu, Qin
    Zhen, Yihan
    Pang, Maobin
    Wang, Baoguo
    ACS NANO, 2024, 18 (34) : 22901 - 22916
  • [47] Optimizing catalyst layer structure design for improved water management of anion exchange membrane fuel cells
    Xiao, Cailin
    Huang, Haodong
    Zhang, Zijie
    Jiang, Yuting
    Wang, Guanxiong
    Liu, Hongxiao
    Liu, Yu
    Xing, Lei
    Zeng, Lin
    JOURNAL OF POWER SOURCES, 2024, 606
  • [48] Assessment of the FAA3-50 polymer electrolyte in combination with a NiMn2O4 anode catalyst for anion exchange membrane water electrolysis
    Carbone, A.
    Zignani, S. Campagna
    Gatto, I.
    Trocino, S.
    Arico, A. S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (16) : 9285 - 9292
  • [49] Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices
    Kang, Zhenye
    Wang, Hao
    Liu, Yanrong
    Mo, Jingke
    Wang, Min
    Li, Jing
    Tian, Xinlong
    APPLIED ENERGY, 2022, 317
  • [50] Recent advances in the anode catalyst layer for proton exchange membrane fuel cells
    Li, Zheng
    Wang, Yameng
    Mu, Yongbiao
    Wu, Buke
    Jiang, Yuting
    Zeng, Lin
    Zhao, Tianshou
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 176