Lightweight monocular absolute depth estimation based on attention mechanism

被引:1
|
作者
Jin, Jiayu [1 ,2 ]
Tao, Bo [1 ]
Qian, Xinbo [2 ,3 ]
Hu, Jiaxin [3 ]
Li, Gongfa [4 ]
机构
[1] Wuhan Univ Sci & Technol, Key Lab Met Equipment & Control Technol, Minist Educ, Wuhan, Peoples R China
[2] Wuhan Univ Sci & Technol, Hubei Key Lab Mech Transmiss & Mfg Engn, Wuhan, Peoples R China
[3] Wuhan Univ Sci & Technol, Precis Mfg Inst, Wuhan, Peoples R China
[4] Wuhan Univ Sci & Technol, Res Ctr Biomimet Robot & Intelligent Measurement &, Wuhan, Peoples R China
关键词
lightweight network; deep learning; monocular depth estimation; channel attention; self-supervised;
D O I
10.1117/1.JEI.33.2.023010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To solve the problem of obtaining a higher accuracy at the expense of redundant models, we propose a network architecture. We utilize a lightweight network that retains the high-precision advantage of the transformer and effectively combines it with convolutional neural network. By greatly reducing the training parameters, this approach achieves high precision, making it well suited for deployment on edge devices. A detail highlight module (DHM) is added to effectively fuse information from multiple scales, making the depth of prediction more accurate and clearer. A dense geometric constraints module is introduced to recover accurate scale factors in autonomous driving without additional sensors. Experimental results demonstrate that our model improves the accuracy from 98.1% to 98.3% compared with Monodepth2, and the model parameters are reduced by about 80%.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Monocular Depth Estimation with Optical Flow Attention for Autonomous Drones
    Shimhada, Tomoyasu
    Nishikawa, Hiroki
    Kong, Xiangbo
    Tomiyama, Hiroyuki
    2022 19TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2022, : 197 - 198
  • [42] DEEP MONOCULAR VIDEO DEPTH ESTIMATION USING TEMPORAL ATTENTION
    Ren, Haoyu
    El-khamy, Mostafa
    Lee, Jungwon
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1988 - 1992
  • [43] Monocular depth estimation with multi-view attention autoencoder
    Jung, Geunho
    Yoon, Sang Min
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (23) : 33759 - 33770
  • [44] MAMo: Leveraging Memory and Attention for Monocular Video Depth Estimation
    Yasarla, Rajeev
    Cai, Hong
    Jeong, Jisoo
    Shi, Yunxiao
    Garrepalli, Risheek
    Porikli, Fatih
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 8720 - 8730
  • [45] Boosting Monocular Depth Estimation with Channel Attention and Mutual Learning
    Takagi, Kazunari
    Ito, Seiya
    Kaneko, Naoshi
    Sumi, Kazuhiko
    2019 JOINT 8TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR) WITH INTERNATIONAL CONFERENCE ON ACTIVITY AND BEHAVIOR COMPUTING (ABC), 2019, : 228 - 233
  • [46] Lightweight monocular depth estimation using a fusion-improved transformer
    Sui, Xin
    Gao, Song
    Xu, Aigong
    Zhang, Cong
    Wang, Changqiang
    Shi, Zhengxu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] Lightweight Monocular Depth Estimation via Token-Sharing Transformer
    Lee, Dong-Jae
    Lee, Jae Young
    Shon, Hyunguk
    Yi, Eojindl
    Park, Yeong-Hun
    Cho, Sung-Sik
    Kim, Junmo
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 4895 - 4901
  • [48] Online supervised attention-based recurrent depth estimation from monocular video
    Maslov D.
    Makarov I.
    Maslov, Dmitrii (dvmaslov@edu.hse.ru), 1600, PeerJ Inc. (06): : 1 - 22
  • [49] Unsupervised Monocular Depth Estimation with Attention Based Inception Pipe and Overlap Regularized Loss
    Jiang, Xiaoyuan
    Chen, Xihai
    Zhang, Zhao
    2021 THE 5TH INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, ICVIP 2021, 2021, : 44 - 48
  • [50] LightDepthNet: Lightweight CNN Architecture for Monocular Depth Estimation on Edge Devices
    Liu, Qingliang
    Zhou, Shuai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (04) : 2389 - 2393