Microwave catalytic pyrolysis of solid digestate for high quality bio-oil and biochar

被引:1
|
作者
An, Qing [1 ,2 ]
Liu, Yang [1 ,3 ]
Cao, Xiaobing [1 ]
Yang, Pu [1 ]
Cheng, Long [1 ]
Ghazani, Mohammad Shanb [1 ]
Suota, Maria Juliane [1 ]
Bi, Xiaotao [1 ]
机构
[1] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[2] Tongji Univ, Mech Engn Coll, Thermal & Environm Engn Inst, Shanghai 201800, Peoples R China
[3] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Solid digestate; Microwave pyrolysis; Catalytic pyrolysis; Bio-oil; Biochar; ASSISTED PYROLYSIS; BIOMASS; WASTE; SWITCHGRASS; CONVERSION;
D O I
10.1016/j.jaap.2024.106683
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Microwave-assisted catalytic pyrolysis (MACP) of solid digestate (SD) into value-added products presents a promising solution for waste SD. Both types of catalysts and reactor temperature critically influence the properties of MACP products. This study systematically investigated pyrolysis of SD mixed with different catalysts (K3PO4, 3 PO 4 , natural zeolite, and mixture of K3PO4 3 PO 4 and natural zeolite) at various pyrolysis temperatures (300, 400, and 500 degrees C) for bio-oil and biochar production. The results showed that higher temperatures led to reduced biooil and biochar yields, favoring gas production. The bio-oil derived from SD with 20 wt% K3PO4 3 PO 4 and 20 wt% natural zeolite at 500 degrees C exhibited the largest fraction of aromatic hydrocarbons, reaching 92.43 % and 91.56%, respectively. Catalytic pyroysis resulted in reduction in bio-oil acidity. Biochar specific surface area is influenced by both heating rate and temperature, with the highest surface area (207 m2/g), 2 /g), pore volume (0.2244 cm3/g), 3 /g), and a more regular pore structure being obtained at 500 degrees C and 66.1 degrees C/min with 20 wt% K3PO4. 3 PO 4 . This work demonstrated the feasibility of upgrading waste SD into value-added chemicals, materials, and energy-rich fuels by MACP. Notably, SD with 20 wt% K3PO4 3 PO 4 at 500 degrees C represents the optimal operating condition for both bio-oil and biochar production.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Characterization of bio-oil and biochar from high-temperature pyrolysis of sewage sludge
    Chen, Hongmei
    Zhai, Yunbo
    Xu, Bibo
    Xiang, Bobin
    Zhu, Lu
    Qiu, Lei
    Liu, Xiaoting
    Li, Caiting
    Zeng, Guangming
    ENVIRONMENTAL TECHNOLOGY, 2015, 36 (04) : 470 - 478
  • [42] Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating
    Duan, Dengle
    Wang, Yunpu
    Dai, Leilei
    Ruan, Roger
    Zhao, Yunfeng
    Fan, Liangliang
    Tayier, Maimaitiaili
    Liu, Yuhuan
    BIORESOURCE TECHNOLOGY, 2017, 241 : 207 - 213
  • [44] Bio-oil Deoxygenation by Catalytic Pyrolysis: New Catalysts for the Conversion of Biomass into Densified and Deoxygenated Bio-oil
    Sanna, Aimaro
    Andresen, John M.
    CHEMSUSCHEM, 2012, 5 (10) : 1944 - 1957
  • [45] Catalytic Hydrodeoxygenation of Fast Pyrolysis Bio-Oil from Saccharina japonica Alga for Bio-Oil Upgrading
    Ly, Hoang Vu
    Kim, Jinsoo
    Hwang, Hyun Tae
    Choi, Jae Hyung
    Woo, Hee Chul
    Kim, Seung-Soo
    CATALYSTS, 2019, 9 (12)
  • [46] Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review
    Reza, Md Sumon
    Iskakova, Zhanar Baktybaevna
    Afroze, Shammya
    Kuterbekov, Kairat
    Kabyshev, Asset
    Bekmyrza, Kenzhebatyr Zh.
    Kubenova, Marzhan M.
    Abu Bakar, Muhammad Saifullah
    Azad, Abul K.
    Roy, Hridoy
    Islam, Md Shahinoor
    ENERGIES, 2023, 16 (14)
  • [47] Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil
    Chen, Xu
    Chen, Yingquan
    Yang, Haiping
    Wang, Xianhua
    Che, Qingfeng
    Chen, Wei
    Chen, Hanping
    BIORESOURCE TECHNOLOGY, 2019, 273 : 153 - 158
  • [48] Catalytic co-pyrolysis of solid wastes (low-density polyethylene and lignocellulosic biomass) over microwave assisted biochar for bio-oil upgrading and hydrogen production
    Zou, Rongge
    Wang, Chenxi
    Qian, Moriko
    Huo, Erguang
    Kong, Xiao
    Wang, Yunpu
    Dai, Leilei
    Wang, Lu
    Zhang, Xuesong
    Mateo, Wendy C.
    Ruan, Roger
    Lei, Hanwu
    JOURNAL OF CLEANER PRODUCTION, 2022, 374
  • [49] Enhancing the quality of bio-oil from catalytic pyrolysis of kraft black liquor lignin
    Chen, Jiao
    Liu, Chao
    Wu, Shubin
    Liang, Jiajin
    Lei, Ming
    RSC ADVANCES, 2016, 6 (109) : 107970 - 107976
  • [50] Microwave-assisted catalytic pyrolysis of cellulose for phenol-rich bio-oil production
    Wang, Wenliang
    Wang, Min
    Huang, Jiale
    Tang, Ning
    Dang, Zepan
    Shi, Yujie
    Zhaohe, Meihui
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (06) : 1997 - 2003