A note on the exceptional set for sums of unlike powers of primes

被引:0
|
作者
Liu, Yuhui [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
关键词
Waring-Goldbach problem; Hardy-Littlewood method; Exceptional set; WARING-GOLDBACH PROBLEM;
D O I
10.1007/s13226-024-00695-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is proved that with at most O(N13/96+epsilon)exceptions, every sufficiently large even integer satisfying n <= N, n not equivalent to 2(mod3) can be represented as the sum of two squares of primes, one cube of primes and three biquadrates of primes. This result constitutes a refinement upon that of the author [6].
引用
收藏
页数:8
相关论文
共 50 条
  • [21] The exceptional set for Diophantine inequality with unlike powers of prime variables
    Wenxu Ge
    Feng Zhao
    Czechoslovak Mathematical Journal, 2018, 68 : 149 - 168
  • [22] Representation by sums of unlike powers
    Liu, Jianya
    Zhao, Lilu
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 781 : 19 - 55
  • [23] Sums of powers of primes
    Jane Gerard
    Lawrence C. Washington
    The Ramanujan Journal, 2018, 45 : 171 - 180
  • [24] Sums of powers of primes
    Gerard, Jane
    Washington, Lawrence C.
    RAMANUJAN JOURNAL, 2018, 45 (01): : 171 - 180
  • [25] EQUAL SUMS OF UNLIKE POWERS
    LANDER, LJ
    FIBONACCI QUARTERLY, 1990, 28 (02): : 141 - 150
  • [26] Diophantine inequality by unlike powers of primes
    Zhu, Li
    RAMANUJAN JOURNAL, 2020, 51 (02): : 307 - 318
  • [27] Diophantine approximation by unlike powers of primes
    Liu, Zhixin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (09) : 2445 - 2452
  • [28] On Diophantine approximation by unlike powers of primes
    Ge, Wenxu
    Li, Weiping
    Wang, Tianze
    OPEN MATHEMATICS, 2019, 17 : 544 - 555
  • [29] Diophantine inequality by unlike powers of primes
    Li Zhu
    The Ramanujan Journal, 2020, 51 : 307 - 318
  • [30] A Diophantine Problem with Unlike Powers of Primes
    Mu, Quanwu
    Xi, Liyan
    JOURNAL OF MATHEMATICS, 2021, 2021