Benchmarking feed-forward randomized neural networks for vessel trajectory prediction

被引:5
|
作者
Cheng, Ruke [1 ]
Liang, Maohan [2 ]
Li, Huanhuan [3 ]
Yuen, Kum Fai [1 ]
机构
[1] Nanyang Technol Univ, N1,50 Nanyang Ave, Singapore 639798, Singapore
[2] Natl Univ Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
[3] Liverpool John Moores Univ, Byrom St, Liverpool L3 3AF, England
关键词
Trajectory prediction; Random vector functional link; Randomized neural network; Deep learning; Anomaly detection; ECHO STATE NETWORK;
D O I
10.1016/j.compeleceng.2024.109499
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The burgeoning scale and speed of maritime vessels present escalating challenges to navigational safety. Perceiving the motions of vessels, identifying anomalies, and risk warnings are crucial. Central to addressing these challenges is the analysis of vessel trajectories, which are pivotal for anomaly detection and risk mitigation. This study introduces an innovative approach to time series vessel trajectories, focusing on the Chengshantou waters. We implement and rigorously compare seven feed-forward neural network models, including random vector functional link neural network without direct links (RVFLwoDL), deep RVFLwoDL (DRVFLwoDL), ensemble deep RVFLwoDL (edRVFLwoDL), random vector functional link neural network (RVFL), deep RVFL (DRVFL), ensemble deep RVFL (edRVFL), and broad learning system (BLS). Our evaluation, utilizing diverse error metrics and datasets from various waterways, reveals the superior performance of the RVFL-based models with direct links in trajectory prediction. The findings underscore the critical role of direct links in enhancing the representational and generalization capabilities of RVFL models, thus offering robust and reliable prediction solutions.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] On the Duality Between Belief Networks and Feed-Forward Neural Networks
    Baggenstoss, Paul M.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (01) : 190 - 200
  • [22] Field Programmable Neural Array for Feed-Forward Neural Networks
    Bohrn, Marek
    Fujcik, Lukas
    Vrba, Radimir
    2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2013, : 727 - 731
  • [23] Ear recognition with feed-forward artificial neural networks
    Sibai, Fadi N.
    Nuaimi, Amna
    Maamari, Amna
    Kuwair, Rasha
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (05): : 1265 - 1273
  • [24] Probabilistic robustness estimates for feed-forward neural networks
    Couellan, Nicolas
    NEURAL NETWORKS, 2021, 142 : 138 - 147
  • [25] Ear recognition with feed-forward artificial neural networks
    Fadi N. Sibai
    Amna Nuaimi
    Amna Maamari
    Rasha Kuwair
    Neural Computing and Applications, 2013, 23 : 1265 - 1273
  • [26] Optimal identification using feed-forward neural networks
    Vergara, V
    Sinne, S
    Moraga, C
    FROM NATURAL TO ARTIFICIAL NEURAL COMPUTATION, 1995, 930 : 1052 - 1059
  • [27] Optimizing FPGA implementation of Feed-Forward Neural Networks
    Oniga, S.
    Tisan, A.
    Mic, D.
    Buchman, A.
    Vida-Ratiu, A.
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOL IV, 2008, : 31 - 36
  • [28] Evapotranspiration estimation using feed-forward neural networks
    Kisi, Ozgur
    NORDIC HYDROLOGY, 2006, 37 (03) : 247 - 260
  • [29] SafetyCage: A misclassification detector for feed-forward neural networks
    Johnsen, Pal Vegard
    Remonato, Filippo
    NORTHERN LIGHTS DEEP LEARNING CONFERENCE, VOL 233, 2024, 233 : 113 - 119
  • [30] Invariance priors for Bayesian feed-forward neural networks
    von Toussaint, Udo
    Gori, Silvio
    Dose, Volker
    NEURAL NETWORKS, 2006, 19 (10) : 1550 - 1557