MIMFormer: Multiscale Inception Mixer Transformer for Hyperspectral and Multispectral Image Fusion

被引:2
|
作者
Li, Rumei [1 ]
Zhang, Liyan [1 ,2 ]
Wang, Zun [1 ]
Li, Xiaojuan [1 ,2 ]
机构
[1] Capital Normal Univ, Coll Resource Environm & Tourism, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Key Lab 3 D Informat Acquisit & Applicat, MOE, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Transformers; Hyperspectral imaging; Spatial resolution; Tensors; Image resolution; Deep learning; hyperspectral image (HSI); image fusion; multispectral image (MSI); transformer; WAVELET TRANSFORM; CLASSIFICATION; MODEL;
D O I
10.1109/JSTARS.2024.3447648
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The fusion of low-spatial-resolution hyperspectral image and high-spatial-resolution multispectral image provides an effective method to obtain high-spatial-resolution hyperspectral image. However, existing hybrid fusion architectures combining convolutional neural networks (CNNs) and transformers face significant challenges. Sequential approaches struggle with simultaneous local and global modeling, while parallel approaches often result in information redundancy. In this article, to meet diverse information demands at different layers, we propose a novel multiscale inception mixer transformer network (MIMFormer), a multiscale hybrid network based on the Inception structure integrating CNN and transformer. The core of this network is the multiscale spatial transformer (MST) structure, which enhances the detail richness of fused images by integrating local and global information at various scales. The inception spatial-spectral mixer (ISSM) module within the MST leverages an Inception architecture and employs a spectral splitting mechanism to regulate spectral channel counts across different branches. This design allows the ISSM module to efficiently extract local spatial-spectral features through convolution and max pooling, while global features are captured using a self-attention mechanism, ensuring comprehensive feature fusion across spectral groups. Experimental results on three benchmark datasets and one real remote sensing dataset demonstrate that MIMFormer outperforms ten advanced fusion methods.
引用
收藏
页码:15122 / 15135
页数:14
相关论文
共 50 条
  • [21] HMF-Former: Spatio-Spectral Transformer for Hyperspectral and Multispectral Image Fusion
    You, Tengfei
    Wu, Chanyue
    Bai, Yunpeng
    Wang, Dong
    Ge, Huibin
    Li, Ying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [22] An Implicit Transformer-based Fusion Method for Hyperspectral and Multispectral Remote Sensing Image
    Zhu, Chunyu
    Zhang, Tinghao
    Wu, Qiong
    Li, Yachao
    Zhong, Qin
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 131
  • [23] HMF-Former: Spatio-Spectral Transformer for Hyperspectral and Multispectral Image Fusion
    You, Tengfei
    Wu, Chanyue
    Bai, Yunpeng
    Wang, Dong
    Ge, Huibin
    Li, Ying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [24] MLKAF-Net: Multiscale Large Kernel Attention Network for Hyperspectral and Multispectral Image Fusion
    Zhang, Haozheng
    Yang, Yanhong
    Zhang, Jianhua
    Chen, Shengyong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [25] A VARIATIONAL FORMULATION FOR HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION
    Mifdal, Jamila
    Coll, Bartomeu
    Duran, Joan
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3328 - 3332
  • [26] HYPERSPECTRAL AND MULTISPECTRAL WASSERSTEIN BARYCENTER FOR IMAGE FUSION
    Mifdal, Jamila
    Coll, Bartomeu
    Courty, Nicolas
    Froment, Jacques
    Vedel, Beatrice
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3373 - 3376
  • [27] MCT-Net: Multi-hierarchical cross transformer for hyperspectral and multispectral image fusion
    Wang, Xianghai
    Wang, Xinying
    Song, Ruoxi
    Zhao, Xiaoyang
    Zhao, Keyun
    KNOWLEDGE-BASED SYSTEMS, 2023, 264
  • [28] Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net
    Xie, Qi
    Zhou, Minghao
    Zhao, Qian
    Meng, Deyu
    Zuo, Wangmeng
    Xu, Zongben
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1585 - 1594
  • [29] Hyperspectral and multispectral images fusion based on pyramid swin transformer
    Lang, Han
    Bao, Wenxing
    Feng, Wei
    Qu, Kewen
    Ma, Xuan
    Zhang, Xiaowu
    INFRARED PHYSICS & TECHNOLOGY, 2024, 143
  • [30] HYPERSPECTRAL AND MULTISPECTRAL IMAGES FUSION BASED ON PYRAMID SWIN TRANSFORMER
    Lang, Han
    Bao, Wenxing
    Feng, Wei
    Sun, Shasha
    Ma, Xuan
    Zhang, Xiaowu
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 3125 - 3128