A two-stage deep learning strategy for weed identification in grassfields

被引:1
|
作者
Calderara-Cea, Felipe [1 ]
Torres-Torriti, Miguel [1 ,5 ]
Cheein, Fernando Auat [2 ,3 ,5 ]
Delpiano, Jose [4 ,5 ]
机构
[1] Pontificia Univ Catolica Chile, Sch Engn, Dept Elect Engn, Santiago, Chile
[2] Heriot Watt Univ, Edinburgh Ctr Robot, UK Natl Robotarium, Edinburgh, Scotland
[3] Univ Tecn Federico Santa Maria, Dept Elect, Valparaiso, Chile
[4] Univ los Andes, Fac Engn & Appl Sci, Santiago, Chile
[5] Adv Ctr Elect & Elect Engn, Valparaiso, Chile
关键词
Weed detection; Object detection; Semantic segmentation; Precision agriculture; Convolutional Siamese networks; Fully Convolutional Neural Networks; NETWORKS; DISCRIMINATION; CROP;
D O I
10.1016/j.compag.2024.109300
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Machine vision strategies for weed identification, whether in industrial crops or grassfields, are fundamental to the development of automated removal systems necessary to increase agricultural yield and field maintenance efficiency. Identifying plant species considered invasive on grassfields is particularly challenging due to reduced color and morphological contrast, as well as phenotypic variability. This work presents a two-stage weed identification strategy using visible spectrum images. The first stage employs a convolutional siamese neural network to identify candidate regions that may contain weeds of irregular or regular morphology. The second stage employs a convolutional neural network to confirm the presence of irregular morphology weeds. The results of each stage are combined to produce an output containing a per-pixel probability of irregular weed and bounding boxes for the morphologically regular weed. The two-stage strategy has an accuracy score of 97.16% and a balanced accuracy score of 89.94% and macro F1 score of 81.14%. In addition to the good performance scores obtained with the proposed approach, it is to be noted that the convolutional Siamese network allows achieving a good performance with a relatively small dataset compared to other strategies that employ data-intensive training phases for optimizing the convolutional neural networks. The results were obtained with a dataset of weeds that has been made publicly available, as well as the neural network models and associated computer code. The dataset contains samples Trifolium repens and Lectuca virosa on grass obtained with two different cameras under varying illumination conditions and different geographic locations. The lightweight nature of the proposed strategy provides a solution amenable to implementation using currently existing embedded computer technology for real-time weed detection.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Portfolio management via two-stage deep learning with a joint cost
    Yun, Hyungbin
    Lee, Minhyeok
    Kang, Yeong Seon
    Seok, Junhee
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 143
  • [22] Two-Stage Metric Learning
    Wang, Jun
    Sun, Ke
    Sha, Fei
    Marchand-Maillet, Stephane
    Kalousis, Alexandros
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 370 - 378
  • [23] A deep reinforcement learning framework for solving two-stage stochastic programs
    Yilmaz, Dogacan
    Buyuktahtakin, I. Esra
    OPTIMIZATION LETTERS, 2024, 18 (09) : 1993 - 2020
  • [24] Two-Stage Population Based Training Method for Deep Reinforcement Learning
    Zhou, Yinda
    Liu, Weiming
    Li, Bin
    2019 THE 3RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPILATION, COMPUTING AND COMMUNICATIONS (HP3C 2019), 2019, : 38 - 44
  • [25] A Two-Stage Deep Learning Approach for Optimizing Fashion Product Recommendations
    Suvarna Buradagunta
    Sivadi Balakrishna
    SN Computer Science, 6 (4)
  • [26] Two-stage deep learning for supervised cross-modal retrieval
    Shao, Jie
    Zhao, Zhicheng
    Su, Fei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (12) : 16615 - 16631
  • [27] A Two-Stage Multi-Objective Deep Reinforcement Learning Framework
    Chen, Diqi
    Wang, Yizhou
    Gao, Wen
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1063 - 1070
  • [28] A Two-Stage Deep Learning Method For Foreign Object Detection and Localization
    Zhang, Yuwei
    Yuan, Miaolong
    Wang, Zhenbiao
    INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING, ICOPEN 2023, 2024, 13069
  • [29] A two-stage seismic data denoising network based on deep learning
    Zhang, Yan
    Zhang, Chi
    Song, Liwei
    STUDIA GEOPHYSICA ET GEODAETICA, 2024, 68 (3-4) : 156 - 175
  • [30] Two-stage deep learning for supervised cross-modal retrieval
    Jie Shao
    Zhicheng Zhao
    Fei Su
    Multimedia Tools and Applications, 2019, 78 : 16615 - 16631