Phase-field finite element modelling of creep crack growth in martensitic steels

被引:0
|
作者
Ragab, Raheeg [1 ,2 ]
Sun, Wei [1 ]
Li, Ming [3 ]
Liu, Tao [2 ]
机构
[1] Univ Nottingham, Fac Engn, Univ Pk, Nottingham NG7 2RD, England
[2] Queen Mary Univ London, Sch Engn & Mat Sci, London, England
[3] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710072, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Creep; Phase-field fracture; Crack growth; Cavitation damage; CSEF steels; FRACTURE-TOUGHNESS; BRITTLE-FRACTURE; CAVITY GROWTH; DAMAGE MODEL; BEHAVIOR; SIMULATIONS; FORMULATION; PLASTICITY; PRINCIPLES;
D O I
10.1016/j.engfracmech.2024.110491
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Creep fracture presents a major concern for structural materials and critical components operating at elevated temperatures, thus requiring effective computational models. This study presents a phase-field framework for modelling creep crack growth and fracture behaviour of modern high-temperature materials such as Creep Strength Enhanced Ferritic (CSEF) martensitic steels. The model was formulated using the thermodynamic principles of the variational phase field theory of fracture and considering some physical aspects of creep fracture. Within the modelling framework, a dissipation potential dependent on creep damage is introduced to capture the effect of creep cavitation on the fracture energy and the creep crack growth resistance of the solid in a phenomenological manner. An elastoplastic power-law creep model is coupled to the phase-field formulations to account for the non-linear deformation processes ahead of the crack tip due to inelastic deformations, as well as their contribution to fracture at high temperatures. The capability of the proposed model is assessed against experimental data from compact tension (CT) creep tests conducted on P91 and P92 steels. Good agreement was obtained between the FE- predicted creep crack growth behaviour and the experimental measurements, showcasing the model's feasibility. Further, numerical experiments were conducted using the proposed model to elucidate some key aspects influencing the fracture behaviour of martensitic steels. The proposed computational framework not only demonstrated good capability but was also able to offer improved mechanistic insights into the influence of material tendency to develop creep cavities on crack growth behaviour. This work contributes valuable insights into understanding the fracture process of CSEF steels at elevated temperatures and further demystifies the role of creep ductility.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Elasto-plastic phase-field simulation of martensitic transformation in lath martensite steels
    Cong, Zhenhua
    Murata, Yoshinori
    Tsukada, Yuhki
    Koyama, Toshiyuki
    PHILOSOPHICAL MAGAZINE, 2013, 93 (14) : 1739 - 1747
  • [32] Phase-field modelling of the thermo-mechanical properties of carbon steels
    Seol, DJ
    Oh, KH
    Cho, JW
    Lee, JE
    Yoon, US
    ACTA MATERIALIA, 2002, 50 (09) : 2259 - 2268
  • [33] On the relation between phase-field crack approximation and gradient damage modelling
    Steinke, Christian
    Zreid, Imadeddin
    Kaliske, Michael
    COMPUTATIONAL MECHANICS, 2017, 59 (05) : 717 - 735
  • [34] Phase-field fracture modelling of crack nucleation and propagation in porous rock
    Alex Spetz
    Ralf Denzer
    Erika Tudisco
    Ola Dahlblom
    International Journal of Fracture, 2020, 224 : 31 - 46
  • [35] Influence of material parameters on 2D-martensitic transformation based on the phase-field finite-element method
    Li Chang
    Gao Jingxiang
    Zhang Dacheng
    Chen Zhengwei
    Han Xing
    METALLURGICAL RESEARCH & TECHNOLOGY, 2019, 116 (06)
  • [36] Modelling of environmentally assisted material degradation in the crack phase-field framework
    Falkenberg, Rainer
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2019, 233 (01) : 5 - 12
  • [37] Static recrystallization study on pure aluminium using crystal plasticity finite element and phase-field modelling
    Luan, Qinmeng
    Lee, Junyi
    Zheng, Zebang
    Lin, Jianguo
    Jiang, Jun
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON METAL FORMING METAL FORMING 2018, 2018, 15 : 1800 - 1807
  • [38] On the relation between phase-field crack approximation and gradient damage modelling
    Christian Steinke
    Imadeddin Zreid
    Michael Kaliske
    Computational Mechanics, 2017, 59 : 717 - 735
  • [39] Phase-field fracture modelling of crack nucleation and propagation in porous rock
    Spetz, Alex
    Denzer, Ralf
    Tudisco, Erika
    Dahlblom, Ola
    INTERNATIONAL JOURNAL OF FRACTURE, 2020, 224 (01) : 31 - 46
  • [40] A combined finite element-finite volume framework for phase-field fracture
    Sargado, Juan Michael
    Keilegavlen, Eirik
    Berre, Inga
    Nordbotten, Jan Martin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373