An Active Strategy to Reduce Residual Alkali for High-Performance Layered Oxide Cathode Materials of Sodium-Ion Batteries

被引:0
|
作者
Feng, Lihua [1 ,2 ]
Guo, Jinze [1 ,2 ]
Sun, Chujun [3 ]
Xiao, Xin [4 ]
Feng, Lijie [5 ]
Hao, Youchen [1 ,2 ]
Sun, Guojie [1 ,2 ]
Tian, Ziqi [3 ]
Li, Tingting [3 ]
Li, Yong [4 ]
Jiang, Yinzhu [1 ,2 ,6 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Future Sci Res Inst, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311215, Peoples R China
[3] Huzhou Horizontal Na Energy Technol Co Ltd, Huzhou 313000, Peoples R China
[4] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[5] Zaozhuang Univ, Coll Chem Engn, Zaozhuang 277160, Peoples R China
[6] Baotou Res Inst Rare Earths, State Key Lab Baiyunobo Rare Earth Resource Res &, Baotou 014030, Peoples R China
基金
中国博士后科学基金;
关键词
layered transition metal oxides; residual alkali; slow cooling; sodium-ion batteries; PHASE-TRANSITION; ENERGY-STORAGE; EVOLUTION;
D O I
10.1002/smll.202403084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Residual alkali is one of the biggest challenges for the commercialization of sodium-based layered transition metal oxide cathode materials since it can even inevitably appear during the production process. Herein, taking O3-type Na0.9Ni0.25Mn0.4Fe0.2Mg0.1Ti0.05O2 as an example, an active strategy is proposed to reduce residual alkali by slowing the cooling rate, which can be achieved in one-step preparation method. It is suggested that slow cooling can significantly enhance the internal uniformity of the material, facilitating the reintegration of Na+ into the bulk material during the calcination cooling phase, therefore substantially reducing residual alkali. The strategy can remarkably suppress the slurry gelation and gas evolution and enhance the structural stability. Compared to naturally cooled cathode materials, the capacity retention of the slowly cooled electrode material increases from 76.2% to 85.7% after 300 cycles at 1 C. This work offers a versatile approach to the development of advanced cathode materials toward practical applications. An active strategy is introduced to reduce residual alkali by slowing the cooling rate, which notably enhances the internal uniformity and facilitates the reintegration of Na+ into the bulk material, thus substantially reducing surface impurities. This strategy can remarkably suppress the slurry gelation and gas evolution while enhancing structural stability. image
引用
收藏
页数:8
相关论文
共 50 条
  • [41] High-performance P2-Type Fe/Mn-based oxide cathode materials for sodium-ion batteries
    Tang, Ke
    Wang, Yu
    Zhang, Xiaohui
    Jamil, Sidra
    Huang, Yan
    Cao, Shuang
    Xie, Xin
    Bai, Yansong
    Wang, Xianyou
    Luo, Zhigao
    Chen, Gairong
    ELECTROCHIMICA ACTA, 2019, 312 : 45 - 53
  • [42] Progress in defect engineering of high-performance Prussian blue analogues as cathode materials for sodium-ion batteries
    Huang, Yifan
    Mu, Wenning
    Bi, Xiaolong
    Hou, Zhigang
    Lei, Xuefei
    Wang, Qing
    Luo, Shaohua
    JOURNAL OF ENERGY STORAGE, 2025, 111
  • [43] Tailoring the growth of iron hexacyanoferrates for high-performance cathode of sodium-ion batteries
    Xiang, Jingjing
    Hao, Youchen
    Gao, Yuting
    Ji, Lei
    Wang, Li
    Sun, Guoxing
    Tang, Yuxin
    Zhu, Yaofeng
    Jiang, Yinzhu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 946
  • [44] A Configuration Entropy Enabled High-Performance Polyanionic Cathode for Sodium-Ion Batteries
    Li, Meng
    Sun, Chen
    Yuan, Xuanyi
    Li, Yang
    Yuan, Yifei
    Jin, Haibo
    Lu, Jun
    Zhao, Yongjie
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (21)
  • [45] Improving the electrochemical performance of layered cathode oxide for sodium-ion batteries by optimizing the titanium content
    Bao, Shuo
    Luo, Shao-hua
    Wang, Zhi-yuan
    Yan, Sheng-xue
    Wang, Qing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 544 : 164 - 171
  • [46] Thiophene derivatives as electrode materials for high-performance sodium-ion batteries
    Ma, Chao
    Wang, Liang-Yu
    Shu, Mou-Hai
    Hou, Cheng-Cheng
    Wang, Kai-Xue
    Chen, Jie-Sheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (19) : 11530 - 11536
  • [47] Oxygen Vacancy Modulation towards High-Performance Layered Oxide Cathodes for Lithium/Sodium-Ion Batteries
    Jin, Junteng
    Liu, Yongchang
    Chen, Jun
    BATTERIES & SUPERCAPS, 2023, 6 (12)
  • [48] Stabilized Oxygen Vacancy Chemistry toward High-Performance Layered Oxide Cathodes for Sodium-Ion Batteries
    Cheng, Chen
    Zhuo, Zengqing
    Xia, Xiao
    Liu, Tong
    Shen, Yihao
    Yuan, Cheng
    Zeng, Pan
    Cao, Duanyun
    Zou, Ying
    Guo, Jinghua
    Zhang, Liang
    ACS NANO, 2024, 18 (51) : 35052 - 35065
  • [49] Improving the Performance of the Layered Nickel Manganese Oxide Cathode of Sodium-Ion Batteries by Direct Coating with Sodium Niobium Oxide
    Lavela, Sergio
    Santos, Antonio Carlos do Nascimento
    da Motta, Fabiana Villela
    Bomio, Mauricio Roberto Delmonte
    Lavela, Pedro
    Vicente, Carlos Perez
    Tirado, Jose Luis
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (42) : 56975 - 56986
  • [50] High-Entropy Layered Oxide Cathode Materials with Moderated Interlayer Spacing and Enhanced Kinetics for Sodium-Ion Batteries
    Huang, Zefu
    Wang, Shijian
    Guo, Xin
    Marlton, Frederick
    Fan, Yameng
    Pang, Wei-Kong
    Huang, Tao
    Xiao, Jun
    Li, Dongfang
    Liu, Hao
    Gu, Qinfen
    Yang, Cheng-Chieh
    Dong, Chung-Li
    Sun, Bing
    Wang, Guoxiu
    ADVANCED MATERIALS, 2024, 36 (50)