Euclidean hypersurfaces isometric to spheres

被引:6
|
作者
Li, Yanlin [1 ]
Bin Turki, Nasser [2 ]
Deshmukh, Sharief [2 ]
Belova, Olga [3 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Immanuel Kant Baltic Fed Univ, Inst High Technol, Educ Sci Cluster, A Nevsky Str 14, Kaliningrad 236016, Russia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 10期
关键词
shape operator; n-sphere; Euclidean space; static perfect fluid equation; incompressible vector fields; COMPACT RIEMANNIAN MANIFOLD; DUPIN HYPERSURFACES; SUBMANIFOLDS; GEOMETRY;
D O I
10.3934/math.20241373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an immersed hypersurface Mn n in the Euclidean space E n +1 , the tangential component omega of the position vector field of the hypersurface is called the basic vector field, and the smooth function of the normal component of the position vector field gives a function sigma on the hypersurface called the support function of the hypersurface. In the first result, we show that on a complete and simply connected hypersurface Mn n in E n +1 of positive Ricci curvature with shape operator T invariant under omega and the support function sigma satisfies the static perfect fluid equation if and only if the hypersurface is isometric to a sphere. In the second result, we show that a compact hypersurface Mn n in E n +1 with the gradient of support function sigma , an eigenvector of the shape operator T with eigenvalue function the mean curvature H , and the integral of the squared length of the gradient del sigma sigma has a certain lower bound, giving a characterization of a sphere. In the third result, we show that a compact and simply connected hypersurface Mn n of positive Ricci curvature in E n +1 has an incompressible basic vector field omega , if and only if Mn n is isometric to a sphere.
引用
收藏
页码:28306 / 28319
页数:14
相关论文
共 50 条
  • [41] STABILITY OF CAPILLARY HYPERSURFACES IN A EUCLIDEAN BALL
    Li, Haizhong
    Xiong, Changwei
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 297 (01) : 131 - 146
  • [42] Some generic hypersurfaces in a Euclidean space
    Alohali, Hanan
    Deshmukh, Sharief
    AIMS MATHEMATICS, 2024, 9 (06): : 15008 - 15023
  • [43] Conformal infinitesimal variations of Euclidean hypersurfaces
    Dajczer, M.
    Jimenez, M. I.
    Vlachos, Th.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) : 743 - 768
  • [44] Examples of compact λ-hypersurfaces in Euclidean spaces
    Qing-Ming Cheng
    Guoxin Wei
    ScienceChina(Mathematics), 2021, 64 (01) : 155 - 166
  • [45] Correction to: The infinitesimally bendable Euclidean hypersurfaces
    M. Dajczer
    Th. Vlachos
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 1981 - 1982
  • [46] Rigidity of Minimal Isometric Immersions of Spheres into Spheres
    Christine M. Spheres
    Geometriae Dedicata, 1998, 73 (3) : 275 - 293
  • [47] Minimal Translation Hypersurfaces in Euclidean Space
    Munteanu, Marian Ioan
    Palmas, Oscar
    Ruiz-Hernandez, Gabriel
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 2659 - 2676
  • [48] A Note on compact hypersurfaces in a Euclidean space
    Deshmukh, Sharief
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 971 - 974
  • [49] Examples of compact λ-hypersurfaces in Euclidean spaces
    Qing-Ming Cheng
    Guoxin Wei
    Science China Mathematics, 2021, 64 : 155 - 166
  • [50] Brownian functionals on hypersurfaces in Euclidean space
    Kinateder, KKJ
    McDonald, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1815 - 1822