Euclidean hypersurfaces isometric to spheres

被引:6
|
作者
Li, Yanlin [1 ]
Bin Turki, Nasser [2 ]
Deshmukh, Sharief [2 ]
Belova, Olga [3 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Immanuel Kant Baltic Fed Univ, Inst High Technol, Educ Sci Cluster, A Nevsky Str 14, Kaliningrad 236016, Russia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 10期
关键词
shape operator; n-sphere; Euclidean space; static perfect fluid equation; incompressible vector fields; COMPACT RIEMANNIAN MANIFOLD; DUPIN HYPERSURFACES; SUBMANIFOLDS; GEOMETRY;
D O I
10.3934/math.20241373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an immersed hypersurface Mn n in the Euclidean space E n +1 , the tangential component omega of the position vector field of the hypersurface is called the basic vector field, and the smooth function of the normal component of the position vector field gives a function sigma on the hypersurface called the support function of the hypersurface. In the first result, we show that on a complete and simply connected hypersurface Mn n in E n +1 of positive Ricci curvature with shape operator T invariant under omega and the support function sigma satisfies the static perfect fluid equation if and only if the hypersurface is isometric to a sphere. In the second result, we show that a compact hypersurface Mn n in E n +1 with the gradient of support function sigma , an eigenvector of the shape operator T with eigenvalue function the mean curvature H , and the integral of the squared length of the gradient del sigma sigma has a certain lower bound, giving a characterization of a sphere. In the third result, we show that a compact and simply connected hypersurface Mn n of positive Ricci curvature in E n +1 has an incompressible basic vector field omega , if and only if Mn n is isometric to a sphere.
引用
收藏
页码:28306 / 28319
页数:14
相关论文
共 50 条
  • [1] EUCLIDEAN HYPERSURFACES WITH ISOMETRIC GAUSS MAPS
    DAJCZER, M
    GROMOLL, D
    MATHEMATISCHE ZEITSCHRIFT, 1986, 191 (02) : 201 - 205
  • [3] Isometric rigidity of Wasserstein spaces over Euclidean spheres
    Geher, Gyoergy Pal
    Hruskova, Aranka
    Titkos, Tamas
    Virosztek, Daniel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (02)
  • [5] On 1-index of Unstable Spacelike Hypersurfaces in Pseudo-Euclidean Spheres
    Esmaeili, Behzad
    Pashaie, Firooz
    Haghighatdoost, Ghorbanali
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2021, 18 (04): : 97 - 111
  • [6] REFLECTIVE EUCLIDEAN HYPERSURFACES
    DRUCKER, D
    GEOMETRIAE DEDICATA, 1991, 39 (03) : 361 - 362
  • [7] Isometric Euclidean submanifolds with isometric Gauss maps
    Dajczer, M.
    Jimenez, M. I.
    Vlachos, Th.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,
  • [8] Complete λ-Hypersurfaces in Euclidean Spaces
    Qingming Cheng
    Guoxin Wei
    Chinese Annals of Mathematics, Series B, 2022, 43 : 877 - 892
  • [9] TRANSLATION HYPERSURFACES AND TZITZEICA TRANSLATION HYPERSURFACES OF THE EUCLIDEAN SPACE
    Aydin, Muhittin Evren
    Mihai, Adela
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2015, 16 (04): : 477 - 483
  • [10] RIGIDITY OF COMPLETE EUCLIDEAN HYPERSURFACES
    DAJCZER, M
    GROMOLL, D
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 31 (02) : 401 - 416