Anomaly detection for multivariate time series in IoT using discrete wavelet decomposition and dual graph attention networks

被引:5
|
作者
Xie, Shujiang [1 ]
Li, Lian [2 ]
Zhu, Yian [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Software, Xian 710072, Peoples R China
关键词
Anomaly detection; Internet of things; Multivariate time series; Graph attention network; Discrete wavelet decomposition; Meta-learning;
D O I
10.1016/j.cose.2024.104075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Effective anomaly detection in multivariate time series data is critical to ensuring the security of Internet of Things (IoT) devices and systems. However, building a high precision and low false positive rate anomaly detection model for the complex and volatile IoT environment is a challenging task. This is often due to issues such as a lack of anomaly labeling, high data volatility, and the complexity of device mechanisms. Traditional machine learning algorithms and sequence models frequently fail to account for feature correlation and temporal dependency in anomaly detection. Although deep learning-based anomaly detection methods have progressed, there is still room for improvement in precision, recall, and generalization ability. In this paper, we propose an anomaly detection model called Meta-MWDG to address these issues. The model is based on a multi-scale discrete wavelet decomposition and a dual graph attention network, which can effectively extract feature correlation and temporal dependency in multivariate time series data. Additionally, model- agnostic meta-learning (MAML) is introduced to improve the model's generalization performance, enabling it to perform well on new tasks even with a few samples. A gated recurrent unit (GRU) is combined with a multi- head self-attention network to output both prediction and reconstruction results in a joint optimization strategy, improving the precision of anomaly detection. Extensive experimental studies demonstrate that Meta-MWDG outperforms the state-of-the-art methods in anomaly detection.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [12] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [13] Hybrid graph transformer networks for multivariate time series anomaly detection
    Gao, Rong
    He, Wei
    Yan, Lingyu
    Liu, Donghua
    Yu, Yonghong
    Ye, Zhiwei
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (01): : 642 - 669
  • [14] Hybrid graph transformer networks for multivariate time series anomaly detection
    Rong Gao
    Wei He
    Lingyu Yan
    Donghua Liu
    Yonghong Yu
    Zhiwei Ye
    The Journal of Supercomputing, 2024, 80 : 642 - 669
  • [15] Variational Graph Attention Networks With Self-Supervised Learning for Multivariate Time Series Anomaly Detection
    Gao, Yu
    Qi, Jin
    Ye, Hongjiang
    Sun, Ying
    Hu, Xiaoxuan
    Dong, Zhenjiang
    Sun, Yanfei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [16] Multivariate Time-series Anomaly Detection via Graph Attention Network
    Zhao, Hang
    Wang, Yujing
    Duan, Juanyong
    Huang, Congrui
    Cao, Defu
    Tong, Yunhai
    Xu, Bixiong
    Bai, Jing
    Tong, Jie
    Zhang, Qi
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 841 - 850
  • [17] From anomaly detection to classification with graph attention and transformer for multivariate time series
    Wang, Chaoyang
    Liu, Guangyu
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [18] Learning Graph Structures With Transformer for Multivariate Time-Series Anomaly Detection in IoT
    Chen, Zekai
    Chen, Dingshuo
    Zhang, Xiao
    Yuan, Zixuan
    Cheng, Xiuzhen
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12) : 9179 - 9189
  • [19] Multiview Graph Contrastive Learning for Multivariate Time-Series Anomaly Detection in IoT
    Qin, Shuxin
    Chen, Lin
    Luo, Yongcan
    Tao, Gaofeng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (24) : 22401 - 22414
  • [20] Anomaly Detection via Graph Attention Networks-Augmented Mask Autoregressive Flow for Multivariate Time Series
    Liu, Hao
    Luo, Wang
    Han, Lixin
    Gao, Peng
    Yang, Weiyong
    Han, Guangjie
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19368 - 19379