Vapor-liquid-solid grown silica nanowire based electrochemical glucose biosensor

被引:27
|
作者
Murphy-Perez, Eduardo [1 ]
Arya, Sunil K. [1 ]
Bhansali, Shekhar [1 ]
机构
[1] Univ S Florida, Dept Elect Engn, BioMEMS & Microsyst Lab, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
ELECTROPHORETIC DEPOSITION; CERAMICS; COMPOSITE; SENSORS; ROUTE; FILM;
D O I
10.1039/c0an00977f
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Vapor-liquid-solid (VLS) grown silica nanowires (SiO(2)NWs) have been deposited electrophoretically on a gold electrode and utilized for covalent immobilization of glucose oxidase (GOx). Covalent binding has been achieved via 3-aminopropyltriethoxysilane (APTES) modification and N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide chemistry. Scanning electron microscopy, transmission electron microscopy and cyclic voltammetry techniques have been used to characterize SiO2NW and GOx/APTES/SiO2NW/Au bioelectrode. Electrochemical studies reveal that SiO2NW increases the effective electro-active surface area thus resulting in higher loading of enzyme. Response characteristics show linearity in the range of interest 25-300 mg dl(-1), with a detection limit of 11 mg dl(-1), sensitivity: 0.463 mu A (mg dl(-1))(-1) and regression coefficient of 0.992.
引用
收藏
页码:1686 / 1689
页数:4
相关论文
共 50 条
  • [31] Photovoltaic characteristics of silicon nanowire arrays synthesized by vapor-liquid-solid process
    Kuo, Cheng Yung
    Gau, Chie
    Dai, Bau Tong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (01) : 154 - 157
  • [32] Experimental evidence and physical understanding of ZnO vapor-liquid-solid nanowire growth
    Y. H. Yang
    Y. Feng
    G. W. Yang
    Applied Physics A, 2011, 102 : 319 - 323
  • [33] SiC nanowire vapor-liquid-solid growth using vapor-phase catalyst delivery
    Thirumalai, Rooban Venkatesh K. G.
    Krishnan, Bharat
    Davydov, Albert V.
    Merrett, J. Neil
    Koshka, Yaroslav
    JOURNAL OF MATERIALS RESEARCH, 2013, 28 (01) : 50 - 56
  • [34] Surface Hydrogen Enables Subeutectic Vapor-Liquid-Solid Semiconductor Nanowire Growth
    Sivaram, Saujan V.
    Hui, Ho Yee
    de la Mata, Maria
    Arbiol, Jordi
    Filler, Michael A.
    NANO LETTERS, 2016, 16 (11) : 6717 - 6723
  • [35] On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process
    T.Y. Tan
    N. Li
    U. Gösele
    Applied Physics A, 2004, 78 : 519 - 526
  • [36] Transition region width of nanowire hetero- and pn-junctions grown using vapor-liquid-solid processes
    Li, Na
    Tan, Teh Y.
    Goesele, U.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2008, 90 (04): : 591 - 596
  • [37] Phase Field Model for Morphological Transition in Nanowire Vapor-Liquid-Solid Growth
    Wang, Yanming
    McIntyre, Paul C.
    Cai, Wei
    CRYSTAL GROWTH & DESIGN, 2017, 17 (04) : 2211 - 2217
  • [38] Experimental evidence and physical understanding of ZnO vapor-liquid-solid nanowire growth
    Yang, Y. H.
    Feng, Y.
    Yang, G. W.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (02): : 319 - 323
  • [39] High repetition rate laser ablation for vapor-liquid-solid nanowire growth
    Marcu, A.
    Stokker, F.
    Zamani, R. R.
    Lungu, C. P.
    Grigoriu, C.
    CURRENT APPLIED PHYSICS, 2014, 14 (04) : 614 - 620
  • [40] Doping profiles during nanowire growth via the vapor-liquid-solid mechanism
    Leshchenko, E. D.
    Dubrovskii, V. G.
    4TH INTERNATIONAL SCHOOL AND CONFERENCE ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES (SAINT PETERSBURG OPEN 2017), 2017, 917