Machine learning models for estimating the compressive strength of rubberized concrete subjected to elevated temperature: Optimization and hyper-tuning

被引:4
|
作者
Alahmari, Turki S. [1 ]
Ullah, Irfan [2 ]
Farooq, Furqan [3 ,4 ]
机构
[1] Univ Tabuk, Fac Engn, Dept Civil Engn, POB 741, Tabuk 71491, Saudi Arabia
[2] Univ Engn & Technol, Dept Civil Engn, Peshawar 25120, Pakistan
[3] Natl Univ Sci & Technol NUST, NUST Inst Civil Engn NICE, Sch Civil & Environm Engn SCEE, Sect H 12, Islamabad 44000, Pakistan
[4] Western Caspian Univ, Baku, Azerbaijan
来源
关键词
Rubberized concrete; Sustainability; Machine learning; Artificial neural networks; Gene expression programming; Bagging; SPENT FOUNDRY-SAND; WASTE RUBBER; DURABILITY PROPERTIES; GREEN CONCRETE; STEEL FIBER; TIRE; BEHAVIOR; REPLACEMENT; PERFORMANCE; PREDICTION;
D O I
10.1016/j.scp.2024.101763
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The incorporation of rubber fibers (RFs) brings about significant divergence in the characteristics of rubberized concrete when contrasted with traditional varieties. Thus, raising concerns about performance under elevated temperature and prolonged exposure. This study effectively addresses the challenges of incorporating rubber fibers in concrete by using artificial neural network (ANN), gene expression programming (GEP), and bagging to examine the impact of input factors such as water-to-cement ratio (W/C), rubber fiber content (RF), elevated temperature (T), and exposure duration (t) on air-cooled compressive strength (CSA). The comprehensive literature review and advanced modeling techniques reveal that ANN excels in capturing complex relationships. In addition, GEP provides clear and accurate models through its unique approach, and Bagging enhances model stability and accuracy. These methods together offer a robust framework for estimating the CSA of rubberized concrete. Thus, contributing valuable insights for optimizing its use in construction. All three models exhibited strong performance, with the ANN emerging as the most effective choice among the evaluated models. Notably, ANN displayed the highest coefficient of determination (R-2) value of 0.984, indicating its superior predictive accuracy compared to both GEP (0.982), and bagging (0.970). Moreover, ANN demonstrated the lowest mean absolute error (MAE) score of 0.621 and root mean square error (RMSE) of 0.867, underscoring its precision in forecasting the CSA of rubberized concrete with minimal deviation from experimental values. In addition, the SHapley Additive exPlaination (SHAP) method is employed to comprehend the model estimations. The ICE and PDP plots demonstrate an initial increase in CSA up to 150 degrees C, followed by a significant decrease as temperature rises. Furthermore, CSA decreases with higher RF contents, and linearly declines with increasing W/C ratio. The SHAP analysis provides clear evidence of the strong negative correlation between T and CSA, along with a negative association with RF. A graphical user interface has been developed to estimate the CSA of rubberized concrete, enabling efficient and user-friendly model interaction without the need for physical experimentation.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Machine-Learning-Based Predictive Models for Compressive Strength, Flexural Strength, and Slump of Concrete
    Vargas, John F.
    Oviedo, Ana I.
    Ortega, Nathalia A.
    Orozco, Estebana
    Gomez, Ana
    Londono, Jorge M.
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [32] Feature engineering for predicting compressive strength of high-strength concrete with machine learning models
    Kumar P.
    Pratap B.
    Asian Journal of Civil Engineering, 2024, 25 (1) : 723 - 736
  • [33] Predicting the Residual Compressive Strength of Concrete Exposed to Elevated Temperatures Using Interpretable Machine Learning
    Noman, Muhammad
    Khattak, Afaq
    Alam, Zeshan
    Yaqub, Muhammad
    Farsangi, Ehsan Noroozinejad
    PRACTICE PERIODICAL ON STRUCTURAL DESIGN AND CONSTRUCTION, 2024, 29 (04)
  • [34] Estimating compressive strength of high-performance concrete using different machine learning approaches
    Jamal, Ahmed Salah
    Ahmed, Ali Najah
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 114 : 256 - 265
  • [35] Machine learning and RSM models for prediction of compressive strength of smart bio-concrete
    Algaifi, Hassan Amer
    Abu Bakar, Suhaimi
    Alyousef, Rayed
    Sam, Abdul Rahman Mohd
    Alqarni, Ali S.
    Ibrahim, M. H. Wan
    Shahidan, Shahiron
    Ibrahim, Mohammed
    Salami, Babatunde Abiodun
    SMART STRUCTURES AND SYSTEMS, 2021, 28 (04) : 535 - 551
  • [36] New machine learning prediction models for compressive strength of concrete modified with glass cullet
    Mirzahosseini, Mohammadreza
    Jiao, Pengcheng
    Barri, Kaveh
    Riding, Kyle A.
    Alavi, Amir H.
    ENGINEERING COMPUTATIONS, 2019, 36 (03) : 876 - 898
  • [37] Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models
    Asteris, Panagiotis G.
    Skentou, Athanasia D.
    Bardhan, Abidhan
    Samui, Pijush
    Pilakoutas, Kypros
    CEMENT AND CONCRETE RESEARCH, 2021, 145 (145)
  • [38] Concrete compressive strength classification using hybrid machine learning models and interactive GUI
    Mostafa M. Alsaadawi
    Mohamed Kamel Elshaarawy
    Abdelrahman Kamal Hamed
    Innovative Infrastructure Solutions, 2025, 10 (5)
  • [39] Artificial Intelligence and Machine Learning Techniques to Predict the Compressive Strength of Concrete at High Temperature
    Thenmozhi, S.
    Ramanjaneyulu, Batchu
    Chukka, Naga Dheeraj Kumar Reddy
    Chavan, Sayali S.
    Siddartha, Chintala
    Gorade, Swapnil Balkrishna
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2023, 44 (08): : 1376 - 1384
  • [40] Estimating compressive strength of lightweight foamed concrete using neural, genetic and ensemble machine learning approaches
    Salami, Babatunde Abiodun
    Iqbal, Mudassir
    Abdulraheem, Abdulazeez
    Jalal, Fazal E.
    Alimi, Wasiu
    Jamal, Arshad
    Tafsirojjaman, T.
    Liu, Yue
    Bardhan, Abidhan
    CEMENT & CONCRETE COMPOSITES, 2022, 133