Multi-source domain adaptation for dependency parsing via domain-aware feature generation

被引:0
|
作者
Li, Ying [1 ,2 ]
Zhang, Zhenguo [1 ,2 ]
Xian, Yantuan [1 ,2 ]
Yu, Zhengtao [1 ,2 ]
Gao, Shengxiang [1 ,2 ]
Mao, Cunli [1 ,2 ]
Huang, Yuxin [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
[2] Yunnan Prov Key Lab Artificial Intelligence, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial network; Domain-aware parameter generation network; Multi-source domain adaptation; Dependency parsing;
D O I
10.1007/s13042-024-02306-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With deep representation learning advances, supervised dependency parsing has achieved a notable enhancement. However, when the training data is drawn from various predefined out-domains, the parsing performance drops sharply due to the domain distribution shift. The key to addressing this problem is to model the associations and differences between multiple source and target domains. In this work, we propose an innovative domain-aware adversarial and parameter generation network for multi-source cross-domain dependency parsing where a domain-aware parameter generation network is used for identifying domain-specific features and an adversarial network is used for learning domain-invariant ones. Experiments on the benchmark datasets reveal that our model outperforms strong BERT-enhanced baselines by 2 points in the average labeled attachment score (LAS). Detailed analysis of various domain representation strategies shows that our proposed distributed domain embedding can accurately capture domain relevance, which motivates the domain-aware parameter generation network to emphasize useful domain-specific representations and disregard unnecessary or even harmful ones. Additionally, extensive comparison experiments show deeper insights on the contributions of the two components.
引用
收藏
页码:6093 / 6106
页数:14
相关论文
共 50 条
  • [21] Unsupervised Multi-source Domain Adaptation for Regression
    Richard, Guillaume
    de Mathelin, Antoine
    Hebrail, Georges
    Mougeot, Mathilde
    Vayatis, Nicolas
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT I, 2021, 12457 : 395 - 411
  • [22] On the analysis of adaptability in multi-source domain adaptation
    Redko, Ievgen
    Habrard, Amaury
    Sebban, Marc
    MACHINE LEARNING, 2019, 108 (8-9) : 1635 - 1652
  • [23] Multi-source Domain Adaptation for Semantic Segmentation
    Zhao, Sicheng
    Li, Bo
    Yue, Xiangyu
    Gu, Yang
    Xu, Pengfei
    Hu, Runbo
    Chai, Hua
    Keutzer, Kurt
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [24] Multi-Source Contribution Learning for Domain Adaptation
    Li, Keqiuyin
    Lu, Jie
    Zuo, Hua
    Zhang, Guangquan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5293 - 5307
  • [25] Multi-Source Domain Adaptation: A Causal View
    Zhang, Kun
    Gong, Mingming
    Schoelkopf, Bernhard
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3150 - 3157
  • [26] Dynamic Transfer for Multi-Source Domain Adaptation
    Li, Yunsheng
    Yuan, Lu
    Chen, Yinpeng
    Wang, Pei
    Vasconcelos, Nuno
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10993 - 11002
  • [27] Coupled Training for Multi-Source Domain Adaptation
    Amosy, Ohad
    Chechik, Gal
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1071 - 1080
  • [28] Multi-Source Domain Adaptation for Object Detection
    Yao, Xingxu
    Zhao, Sicheng
    Xu, Pengfei
    Yang, Jufeng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3253 - 3262
  • [29] On the analysis of adaptability in multi-source domain adaptation
    Ievgen Redko
    Amaury Habrard
    Marc Sebban
    Machine Learning, 2019, 108 : 1635 - 1652
  • [30] Multi-Source Domain Adaptation with Sinkhorn Barycenter
    Komatsu, Tatsuya
    Matsui, Tomoko
    Gao, Junbin
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1371 - 1375