A swarm anomaly detection model for IoT UAVs based on a multi-modal denoising autoencoder and federated learning

被引:2
|
作者
Lu, Yu [1 ]
Yang, Tao [1 ]
Zhao, Chong [1 ]
Chen, Wen [2 ]
Zeng, Rong [3 ]
机构
[1] China West Normal Univ, Sch Comp Sci, Nanchong, Peoples R China
[2] Sichuan Univ, Sch Cyber Sci & Engn, Chengdu, Peoples R China
[3] China West Normal Univ, Sch Elect Informat Engn, Nanchong, Peoples R China
关键词
UAV swarm; Intrusion detection; Federated learning; Denoising autoencoder;
D O I
10.1016/j.cie.2024.110454
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The widespread application of unmanned aerial vehicle (UAV) swarms has posed unique challenges for anomaly detection. Multi-modal noise from multi-source heterogeneous sensors during UAV swarm communication affects data quality, and limited data sharing between different UAV organisations restricts training a unified anomaly detection model. To address these problems, this study proposes a UAV swarm anomaly detection model based on a multi-modal denoising autoencoder and federated learning (L-MDAE). First, L-MDAE simulates noise by adding perturbations to the original data during UAV swarm communication. Second, according to the characteristics of UAV data noise, this study designs a new MSE loss function (normalised mean square error, NMSE) based on the normalised correlation coefficient. Furthermore, heterogeneous neural networks with NMSE are constructed to enhance the multi-modal noise-removal capability of the model. Finally, this study considers the UAV control node as the client and the ground control station as the server. Using a federated learning mechanism, L-MDAE is trained on a client dataset, and its parameters are integrated and distributed on the server. In this way, each UAV can effectively detect abnormal data using L-MDAE. Experimental results on five datasets, including ALFA, TLM and ITS, demonstrate that L-MDAE outperforms baseline and related models. When using ALFA, L-MDAE achieved an accuracy of 0.9919 and a swarm anomaly detection accuracy of 0.9901, approximately 2% higher than that of the baseline model.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Leveraging Foundation Models for Multi-modal Federated Learning with Incomplete Modality
    Che, Liwei
    Wang, Jiaqi
    Liu, Xinyue
    Ma, Fenglong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-APPLIED DATA SCIENCE TRACK, PT IX, ECML PKDD 2024, 2024, 14949 : 401 - 417
  • [42] A multi-modal heterogeneous data mining algorithm using federated learning
    Wei, Xianyong
    JOURNAL OF ENGINEERING-JOE, 2021, 2021 (08): : 458 - 466
  • [43] A multi-modal heterogeneous data mining algorithm using federated learning
    Wei, Xianyong
    Journal of Engineering, 2021, 2021 (08): : 458 - 466
  • [44] A Model-Agnostic Framework for Universal Anomaly Detection of Multi-organ and Multi-modal Images
    Zhang, Yinghao
    Lu, Donghuan
    Ning, Munan
    Wang, Liansheng
    Wei, Dong
    Zheng, Yefeng
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 232 - 241
  • [45] FREQUENCY-RELEVANT RESIDUAL LEARNING FOR MULTI-MODAL IMAGE DENOISING
    Liu, Xiongwei
    Sheng, Zehua
    Shen, Hui-Liang
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 86 - 90
  • [46] DIoT: A Federated Self-learning Anomaly Detection System for IoT
    Thien Duc Nguyen
    Marchal, Samuel
    Miettinen, Markus
    Fereidooni, Hossein
    Asokan, N.
    Sadeghi, Ahmad-Reza
    2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, : 756 - 767
  • [47] MMDP: A Mobile-IoT Based Multi-Modal Reinforcement Learning Service Framework
    Wang, Puming
    Yang, Laurence T.
    Li, Jintao
    Li, Xue
    Zhou, Xiaokang
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2020, 13 (04) : 675 - 684
  • [48] Citrus Huanglongbing Detection Based on Multi-Modal Feature Fusion Learning
    Yang, Dongzi
    Wang, Fengcheng
    Hu, Yuqi
    Lan, Yubin
    Deng, Xiaoling
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [49] Applying deep learning-based multi-modal for detection of coronavirus
    Rani, Geeta
    Oza, Meet Ganpatlal
    Dhaka, Vijaypal Singh
    Pradhan, Nitesh
    Verma, Sahil
    Rodrigues, Joel J. P. C.
    MULTIMEDIA SYSTEMS, 2022, 28 (04) : 1251 - 1262
  • [50] Applying deep learning-based multi-modal for detection of coronavirus
    Geeta Rani
    Meet Ganpatlal Oza
    Vijaypal Singh Dhaka
    Nitesh Pradhan
    Sahil Verma
    Joel J. P. C. Rodrigues
    Multimedia Systems, 2022, 28 : 1251 - 1262