Weakly-Einstein three-dimensional Lorentzian manifolds

被引:0
|
作者
Haji-Badali, Ali [1 ]
Atashpeykar, Parvane [1 ]
机构
[1] Univ Bonab, Dept Math, Basic Sci Fac, Bonab, Iran
来源
PUBLICATIONES MATHEMATICAE DEBRECEN | 2024年 / 105卷 / 3-4期
关键词
algebraic models; curvature identity; Lorentzian; 3-metric; weakly-Einstein conditions; 1-curvature homogeneous; HOMOGENEITY; METRICS;
D O I
10.5486/PMD.2024.9513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Berger's curvature identity is studied on Lorentzian algebraic curvature models of dimension three, and homogeneous weakly-Einstein spaces are classified. We show that spaces with two-step nilpotent Ricci operators are the only non-Einstein spaces which satisfy all weakly-Einstein conditions simultaneously. Non-homogeneous examples are constructed using Walker structures.
引用
收藏
页码:259 / 279
页数:21
相关论文
共 50 条