Safflower Yellow Injection Alleviates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative and Endoplasmic Reticulum Stress

被引:0
|
作者
Liang, Wulin [1 ]
Zhang, Mingqian [1 ]
Gao, Jiahui [1 ]
Huang, Rikang [1 ]
Cheng, Lu [1 ]
Zhang, Liyuan [1 ]
Huang, Zhishan [1 ]
Jia, Zhanhong [1 ]
Zhang, Shuofeng [1 ,2 ]
机构
[1] Beijing Univ Chinese Med, Sch Chinese Mat, Beijing 102488, Peoples R China
[2] Univ Tibetan Med, Dept Tibetan Med, Lhasa 850030, Peoples R China
关键词
safflower yellow injection; myocardial ischemia/reperfusion injury; apoptosis; oxidative stress; endoplasmic reticulum stress; APOPTOSIS; PROTECTS; HEART;
D O I
10.3390/ph17081058
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Safflower yellow is an extract of the famous Chinese medicine Carthamus tinctorious L, and safflower yellow injection (SYI) is widely used clinically to treat angina pectoris. However, there are few studies on the anti-myocardial ischemia/reperfusion (I/R) injury effect of SYI, and its mechanisms are unclear. In the present study, we aimed to investigate the protective effect of SYI on myocardial I/R injury and explore its underlying mechanisms. Male Sprague Dawley rats were randomly divided into a control group, sham group, model group, and SYI group (20 mg/kg, femoral vein injection 1 h before modeling). The left anterior descending coronary artery was ligated to establish a myocardial I/R model. H9c2 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) after incubation with 80 mu g/mL SYI for 24 h. In vivo, TsTC, HE, and TUNEL staining were performed to evaluate myocardial injury and apoptosis. A kit was used to detect superoxide dismutase (SOD) and malondialdehyde (MDA) to assess oxidative stress. In vitro, flow cytometry was used to detect the reactive oxygen species (ROS) content and apoptosis rate. Protein levels were determined via Western blotting. Pretreatment with SYI significantly reduced infarct size and pathological damage in rat hearts and suppressed cardiomyocyte apoptosis in vivo and in vitro. In addition, SYI inhibited oxidative stress by increasing SOD activity and decreasing MDA content and ROS production. Myocardial I/R and OGD/R activate endoplasmic reticulum (ER) stress, as evidenced by increased expression of activating transcription factor 6 (ATF6), glucose-regulated protein 78 (GRP78), cysteinyl aspartate-specific proteinase caspase-12, and C/EBP-homologous protein (CHOP), which were all inhibited by SYI. SYI ameliorated myocardial I/R injury by attenuating apoptosis, oxidative damage, and ER stress, which revealed new mechanistic insights into its application.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Insulin attenuates myocardial ischemia/reperfusion injury via reducing oxidative/nitrative stress
    Ji, Lele
    Fu, Feng
    Zhang, Lihua
    Liu, Wenchong
    Cai, Xiaoqing
    Zhang, Lei
    Zheng, Qiangsun
    Zhang, Haifeng
    Gao, Feng
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2010, 298 (04): : E871 - E880
  • [22] Effect of sulfur dioxide preconditioning on rat myocardial ischemia/reperfusion injury by inducing endoplasmic reticulum stress
    Wang, Xin-Bao
    Huang, Xiao-Mei
    Ochs, Todd
    Li, Xue-Ying
    Jin, Hong-Fang
    Tang, Chao-Shu
    Du, Jun-Bao
    BASIC RESEARCH IN CARDIOLOGY, 2011, 106 (05) : 865 - 878
  • [23] Inhibition of endoplasmic reticulum stress by neuregulin-1 protects against myocardial ischemia/reperfusion injury
    Fang, Shan-Juan
    Li, Peng-Yang
    Wang, Chun-Mei
    Xin, Yi
    Lu, Wei-Wei
    Zhang, Xiao-Xia
    Zuo, Song
    Ma, Chang-Sheng
    Tang, Chao-Shu
    Nie, Shao-Ping
    Qi, Yong-Fen
    PEPTIDES, 2017, 88 : 196 - 207
  • [24] Endoplasmic reticulum stress-induced apoptosis: A possible role in myocardial ischemia-reperfusion injury
    Wu, Hui
    Ye, Ming
    Yang, Jun
    Ding, Jiawang
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2016, 208 : 65 - 66
  • [25] Shuxuening injection protects against myocardial ischemia-reperfusion injury through reducing oxidative stress, inflammation and thrombosis
    Wang, Ruiying
    Wang, Min
    Zhou, Jiahui
    Ye, Tianyuan
    Xie, Xueheng
    Ni, Dong
    Ye, Jingxue
    Han, Qiaoling
    Di, Caixia
    Guo, Liang
    Sun, Guibo
    Sun, Xiaobo
    ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7 (20)
  • [26] Effect of sulfur dioxide preconditioning on rat myocardial ischemia/reperfusion injury by inducing endoplasmic reticulum stress
    Xin-Bao Wang
    Xiao-Mei Huang
    Todd Ochs
    Xue-Ying Li
    Hong-Fang Jin
    Chao-Shu Tang
    Jun-Bao Du
    Basic Research in Cardiology, 2011, 106
  • [27] Dexmedetomidine Attenuates Myocardial Ischemia-Reperfusion Injury in Diabetes Mellitus by Inhibiting Endoplasmic Reticulum Stress
    Li, Jinjie
    Zhao, Ying
    Zhou, Nan
    Li, Longyun
    Li, Kai
    JOURNAL OF DIABETES RESEARCH, 2019, 2019
  • [28] Vasonatrin peptide inhibits endoplasmic reticulum stress and attenuates myocardial ischemia/reperfusion injury in diabetic rats
    Zhang, H.
    Wang, W.
    Shi, Z.
    Fu, F.
    Liang, X.
    EUROPEAN HEART JOURNAL, 2015, 36 : 579 - 580
  • [29] Vasonatrin Peptide Inhibits Endoplasmic Reticulum Stress and Attenuates Myocardial Ischemia/reperfusion Injury in Diabetic Rats
    Zhang, Haifeng
    Xing, Wenjuan
    Gao, Feng
    CIRCULATION RESEARCH, 2015, 117
  • [30] Vasonatrin Peptide Inhibits Endoplasmic Reticulum Stress and Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats
    Wang, Weizhong
    Shi, Zhenwei
    Fu, Feng
    Liang, Xiangyan
    Zhang, Haifeng
    DIABETES, 2015, 64 : A120 - A120