Accelerating the Discovery of Efficient High-Entropy Alloy Electrocatalysts: High-Throughput Experimentation and Data-Driven Strategies

被引:3
|
作者
Shan, Xiangyi [1 ,2 ]
Pan, Yiyang [1 ,2 ]
Cai, Furong [1 ]
Gao, Han [1 ]
Xu, Jianan [1 ]
Liu, Daobin [3 ]
Zhu, Qing [3 ]
Li, Panpan [4 ]
Jin, Zhaoyu [5 ]
Jiang, Jun [3 ]
Zhou, Min [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Sch Appl Chem & Engn, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Sch Chem & Mat Sci, Key Lab Precis & Intelligent Chem, Hefei 230026, Peoples R China
[4] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Peoples R China
[5] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Peoples R China
关键词
high-entropy alloy electrocatalysts; high-throughputexperimentation; machine learning; scanning electrochemicalcell microscopy; hydrogen evolution reaction;
D O I
10.1021/acs.nanolett.4c03208
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-entropy alloys (HEAs) present both significant potential and challenges for developing efficient electrocatalysts due to their diverse combinations and compositions. Here, we propose a procedural approach that combines high-throughput experimentation with data-driven strategies to accelerate the discovery of efficient HEA electrocatalysts for the hydrogen evolution reaction (HER). This enables the rapid preparation of HEA arrays with various element combinations and composition ratios within a model system. The intrinsic activity of the HEA arrays is swiftly screened using scanning electrochemical cell microscopy (SECCM), providing precise composition-activity data sets for the HEA system. An ensemble machine learning (EML) model is then used to predict the activity database for the composition subspace of the system. Based on these database results, two groups of promising catalysts are recommended and validated through actual electrocatalytic evaluations. This procedural approach, which combines high-throughput experimentation with data-driven strategies, provides a new pathway to accelerate the discovery of efficient HEA electrocatalysts.
引用
收藏
页码:11632 / 11640
页数:9
相关论文
共 50 条
  • [11] Accelerated discovery of nanostructured high-entropy alloys and multicomponent alloys via high-throughput strategies
    Cheng, Changjun
    Zou, Yu
    PROGRESS IN MATERIALS SCIENCE, 2025, 151
  • [12] Data-driven discovery of a formation prediction rule on high-entropy ceramics
    Yan, Yonggang
    Pei, Zongrui
    Gao, Michael C.
    Misture, Scott
    Wang, Kun
    ACTA MATERIALIA, 2023, 253
  • [13] High-throughput data-driven machine learning prediction of thermal expansion coefficients of high-entropy solid solution carbides
    Kim, Myungjae
    Kim, Jiho
    Kim, Hyokyeong
    Kim, Jiwoong
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 122
  • [14] Data-driven analysis and prediction of stable phases for high-entropy alloy design
    Iman Peivaste
    Ericmoore Jossou
    Ahmed A. Tiamiyu
    Scientific Reports, 13
  • [15] Data-driven analysis and prediction of stable phases for high-entropy alloy design
    Peivaste, Iman
    Jossou, Ericmoore
    Tiamiyu, Ahmed A.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [16] An experimentally driven high-throughput approach to design refractory high-entropy alloys
    Lee C.
    Xie D.
    Kyle Derby B.
    Kevin Baldwin J.
    Tandoc C.
    Ei Atwani O.
    Hu Y.-J.
    Valdez J.A.
    Li N.
    Fensin S.J.
    Materials and Design, 2022, 223
  • [17] Data-driven normalization strategies for high-throughput quantitative RT-PCR
    Mar, Jessica C.
    Kimura, Yasumasa
    Schroder, Kate
    Irvine, Katharine M.
    Hayashizaki, Yoshihide
    Suzuki, Harukazu
    Hume, David
    Quackenbush, John
    BMC BIOINFORMATICS, 2009, 10
  • [18] Data-driven normalization strategies for high-throughput quantitative RT-PCR
    Jessica C Mar
    Yasumasa Kimura
    Kate Schroder
    Katharine M Irvine
    Yoshihide Hayashizaki
    Harukazu Suzuki
    David Hume
    John Quackenbush
    BMC Bioinformatics, 10
  • [19] High-throughput experimentation for discovery of biodegradable polyesters
    Fransen, Katharina A.
    Av-Ron, Sarah H. M.
    Buchanan, Tess R.
    Walsh, Dylan J.
    Rota, Dechen T.
    Van Note, Lana
    Olsen, Bradley D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (23)
  • [20] High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery
    Yao, Yonggang
    Dong, Qi
    Brozena, Alexandra
    Luo, Jian
    Miao, Jianwei
    Chi, Miaofang
    Wang, Chao
    Kevrekidis, Ioannis G.
    Ren, Zhiyong Jason
    Greeley, Jeffrey
    Wang, Guofeng
    Anapolsky, Abraham
    Hu, Liangbing
    SCIENCE, 2022, 376 (6589) : 151 - +