Adaptive control for circulating cooling water system using deep reinforcement learning

被引:0
|
作者
Xu, Jin [1 ]
Li, Han [1 ]
Zhang, Qingxin [1 ]
机构
[1] Shenyang Aerosp Univ, Sch Artificial Intelligence, Shenyang, Liaoning, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 07期
关键词
TEMPERATURE CONTROL; PREDICTIVE CONTROL; FRAMEWORK;
D O I
10.1371/journal.pone.0307767
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Due to the complex internal working process of circulating cooling water systems, most traditional control methods struggle to achieve stable and precise control. Therefore, this paper presents a novel adaptive control structure for the Twin Delayed Deep Deterministic Policy Gradient algorithm, which is based on a reference trajectory model (TD3-RTM). The structure is based on the Markov decision process of the recirculating cooling water system. Initially, the TD3 algorithm is employed to construct a deep reinforcement learning agent. Subsequently, a state space is selected, and a dense reward function is designed, considering the multivariable characteristics of the recirculating cooling water system. The agent updates its network based on different reward values obtained through interactions with the system, thereby gradually aligning the action values with the optimal policy. The TD3-RTM method introduces a reference trajectory model to accelerate the convergence speed of the agent and reduce oscillations and instability in the control system. Subsequently, simulation experiments were conducted in MATLAB/Simulink. The results show that compared to PID, fuzzy PID, DDPG and TD3, the TD3-RTM method improved the transient time in the flow loop by 6.09s, 5.29s, 0.57s, and 0.77s, respectively, and the Integral of Absolute Error(IAE) indexes decreased by 710.54, 335.1, 135.97, and 89.96, respectively, and the transient time in the temperature loop improved by 25.84s, 13.65s, 15.05s, and 0.81s, and the IAE metrics were reduced by 143.9, 59.13, 31.79, and 1.77, respectively. In addition, the overshooting of the TD3-RTM method in the flow loop was reduced by 17.64, 7.79, and 1.29 per cent, respectively, in comparison with the PID, the fuzzy PID, and the TD3.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Deep Reinforcement Learning for Adaptive Learning Systems
    Li, Xiao
    Xu, Hanchen
    Zhang, Jinming
    Chang, Hua-hua
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2023, 48 (02) : 220 - 243
  • [32] Adaptive and extendable control of unmanned surface vehicle formations using distributed deep reinforcement learning
    Wang, Shuwu
    Ma, Feng
    Yan, Xinping
    Wu, Peng
    Liu, Yuanchang
    APPLIED OCEAN RESEARCH, 2021, 110
  • [33] Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning
    Carlucho, Ignacio
    De Paula, Mariano
    Wang, Sen
    Petillot, Yvan
    Acosta, Gerardo G.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 107 : 71 - 86
  • [34] Adaptive Formation Motion Planning and Control of Autonomous Underwater Vehicles Using Deep Reinforcement Learning
    Hadi, Behnaz
    Khosravi, Alireza
    Sarhadi, Pouria
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (01) : 311 - 328
  • [35] Active flow control of square cylinder adaptive to wind direction using deep reinforcement learning
    Yan, Lei
    Zhang, Xingming
    Song, Jie
    Hu, Gang
    PHYSICAL REVIEW FLUIDS, 2024, 9 (09):
  • [36] Nonlinear Optimal Control Using Deep Reinforcement Learning
    Bucci, Michele Alessandro
    Semeraro, Onofrio
    Allauzen, Alexandre
    Cordier, Laurent
    Mathelin, Lionel
    IUTAM LAMINAR-TURBULENT TRANSITION, 2022, 38 : 279 - 290
  • [37] CNC machine control using deep reinforcement learning
    Kalandyk, Dawid
    Kwiatkowski, Bogdan
    Mazur, Damian
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2024, 72 (03)
  • [38] Quadrotor motion control using deep reinforcement learning
    Jiang, Zifei
    Lynch, Alan F.
    JOURNAL OF UNMANNED VEHICLE SYSTEMS, 2021, 9 (04) : 234 - 251
  • [39] Manipulator Control using Federated Deep Reinforcement Learning
    Shivkumar, S.
    Kumaar, A. A. Nippun
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [40] Adaptive Online-Learning Volt-Var Control for Smart Inverters Using Deep Reinforcement Learning
    Beyer, Kirstin
    Beckmann, Robert
    Geissendorfer, Stefan
    von Maydell, Karsten
    Agert, Carsten
    ENERGIES, 2021, 14 (07)