Multilevel Quasi-Interpolation on Chebyshev Sparse Grids

被引:0
|
作者
Alsharif, Faisal [1 ]
机构
[1] Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah 30002, Saudi Arabia
关键词
multilevel; quasi-interpolation; sparse; Chebyshev; Gaussian kernel; meshless grid; SCATTERED DATA INTERPOLATION; APPROXIMATION;
D O I
10.3390/computation12070149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the potential of utilising multilevel quasi-interpolation techniques on Chebyshev sparse grids for complex numerical computations. The paper starts by laying down the motivations for choosing Chebyshev sparse grids and quasi-interpolation methods with Gaussian kernels. It delves into the practical aspects of implementing these techniques. Various numerical experiments are performed to evaluate the efficiency and limitations of the multilevel quasi-sparse interpolation methods with dimensions two dimension and three dimension. The work ultimately aims to provide a comprehensive understanding of the computational efficiency and accuracy achievable through this approach, comparing its performance with traditional methods.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Spline interpolation on sparse grids
    Sickel, Winfried
    Ullrich, Tino
    APPLICABLE ANALYSIS, 2011, 90 (3-4) : 337 - 383
  • [42] Kernel Interpolation with Sparse Grids
    Yadav, Mohit
    Sheldon, Daniel
    Musco, Cameron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [43] Multi-level hermite variational interpolation and quasi-interpolation
    Shengjun Liu
    Guido Brunnett
    Jun Wang
    The Visual Computer, 2013, 29 : 627 - 637
  • [44] Shape preserving fractal multiquadric quasi-interpolation
    Kumar, D.
    Chand, A. K. B.
    Massopust, P. R.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [45] Quasi-interpolation projectors for subdivision function spaces
    Xu, Hailun
    Wen, Zepeng
    Kang, Hongmei
    GRAPHICAL MODELS, 2025, 137
  • [46] FINITE ELEMENT QUASI-INTERPOLATION AND BEST APPROXIMATION
    Ern, Alexandre
    Guermond, Jean-Luc
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (04): : 1367 - 1385
  • [47] Bivariate Quasi-Interpolation Operator of Bernoulli Type
    Catinas, Teodora
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (04) : 1171 - 1183
  • [48] Basis Functions for Scattered Data Quasi-Interpolation
    Gruberger, Nira
    Levin, David
    CURVES AND SURFACES, 2015, 9213 : 263 - 271
  • [49] Tensioned quasi-interpolation via geometric continuity
    Lamberti, P
    Manni, C
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 20 (1-3) : 105 - 127
  • [50] Quasi-interpolation for near-boundary approximations
    Amir, Anat
    Levin, David
    JAEN JOURNAL ON APPROXIMATION, 2019, 11 (1-2): : 67 - 89