Investigating Credit Card Payment Fraud with Detection Methods Using Advanced Machine Learning

被引:1
|
作者
Chang, Victor [1 ]
Ali, Basit [1 ]
Golightly, Lewis [2 ]
Ganatra, Meghana Ashok [1 ]
Mohamed, Muhidin [1 ]
机构
[1] Aston Univ, Dept Operat & Informat Management, Birmingham B4 7ET, England
[2] Teesside Univ, Dept Comp & Games, Middlesbrough TS1 3BX, England
关键词
machine learning; fraud detection; synthetic minority over-sampling technique (SMOTE); under-sampling; PERFORMANCE;
D O I
10.3390/info15080478
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the cybersecurity industry, where legitimate transactions far outnumber fraudulent ones, detecting fraud is of paramount significance. In order to evaluate the accuracy of detecting fraudulent transactions in imbalanced real datasets, this study compares the efficacy of two approaches, random under-sampling and oversampling, using the synthetic minority over-sampling technique (SMOTE). Random under-sampling aims for fairness by excluding examples from the majority class, but this compromises precision in favor of recall. To strike a balance and ensure statistical significance, SMOTE was used instead to produce artificial examples of the minority class. Based on the data obtained, it is clear that random under-sampling achieves high recall (92.86%) at the expense of low precision, whereas SMOTE achieves a higher accuracy (86.75%) and a more even F1 score (73.47%) at the expense of a slightly lower recall. As true fraudulent transactions require at least two methods for verification, we investigated different machine learning methods and made suitable balances between accuracy, F1 score, and recall. Our comparison sheds light on the subtleties and ramifications of each approach, allowing professionals in the field of cybersecurity to better choose the approach that best meets the needs of their own firm. This research highlights the need to resolve class imbalances for effective fraud detection in cybersecurity, as well as the need for constant monitoring and the investigation of new approaches to increase applicability.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Detection of fraud in IoT based credit card collected dataset using machine learning
    Alatawi, Mohammed Naif
    MACHINE LEARNING WITH APPLICATIONS, 2025, 19
  • [32] A widespread survey on machine learning techniques and user substantiation methods for credit card fraud detection
    Berkmans T.J.
    Karthick S.
    International Journal of Business Intelligence and Data Mining, 2022, 22 (1-2): : 223 - 247
  • [33] Credit Card Fraud Detection System using Machine Learning Algorithms and Fuzzy Membership
    Abdulghani, Ahmed Qasim
    Ucan, Osman Nuri
    Alheeti, Khattab M. Ali
    2021 INTERNATIONAL CONFERENCE OF MODERN TRENDS IN INFORMATION AND COMMUNICATION TECHNOLOGY INDUSTRY (MTICTI 2021), 2021, : 36 - 41
  • [34] Comparative Evaluation of Machine Learning Algorithms for Credit Card Fraud Detection
    Singh, Kiran Jot
    Thakur, Khushal
    Kapoor, Divneet Singh
    Sharma, Anshul
    Bajpai, Sakshi
    Sirawag, Neeraj
    Mehta, Riya
    Chaudhary, Chitransh
    Singh, Utkarsh
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 69 - 78
  • [35] Enhancing Credit Card Security: Exploiting Machine Learning for Fraud Detection
    Mahure, Sonali Jagdish
    Reddy, Vennala M.
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 171 - 177
  • [36] Supervised Machine Learning Algorithms for Credit Card Fraud Detection: A Comparison
    Khatri, Samidha
    Arora, Aishwarya
    Agrawal, Arun Prakash
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 680 - 683
  • [37] Analyzing Credit Card Fraud Detection based on Machine Learning Models
    Almutairi, Raghad
    Godavarthi, Abhishek
    Kotha, Arthi Reddy
    Ceesay, Ebrima
    2022 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2022, : 988 - 995
  • [38] The Performance Analysis of Machine Learning Algorithms for Credit Card Fraud Detection
    Khan, Muhammad Zohaib
    Shaikh, Sarmad Ahmed
    Shaikh, Muneer Ahmed
    Khatri, Kamlesh Kumar
    Rauf, Mahira Abdul
    Kalhoro, Ayesha
    Adnan, Muhammad
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (03) : 82 - 98
  • [39] Comprehensive Analysis for Fraud Detection of Credit Card through Machine Learning
    Roy, Parth
    Rao, Prateek
    Gajre, Jay
    Katake, Kanchan
    Jagtap, Arvind
    Gajmal, Yogesh
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 765 - 769
  • [40] Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach
    Khalid, Abdul Rehman
    Owoh, Nsikak
    Uthmani, Omair
    Ashawa, Moses
    Osamor, Jude
    Adejoh, John
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (01)