Review of Thermal Energy Storage Materials for Application in Large-Scale Integrated Energy Systems-Methodology for Matching Heat Storage Solutions for Given Applications

被引:2
|
作者
Jurczyk, Michal [1 ]
Spietz, Tomasz [2 ]
Czardybon, Agata [2 ]
Dobras, Szymon [2 ]
Ignasiak, Karina [2 ]
Bartela, Lukasz [1 ]
Uchman, Wojciech [1 ]
Ochmann, Jakub [1 ]
机构
[1] Silesian Tech Univ, Dept Power Engn & Turbomachinery, Grp Energy Storage Technol, Konarskiego 18, PL-44100 Gliwice, Poland
[2] Inst Energy & Fuel Proc Technol, Zamkowa 1, PL-41803 Zabrze, Poland
关键词
thermal energy storage; single-phase materials; phase-change materials; review; PHASE-CHANGE MATERIALS; SOLAR POWER-PLANTS; HIGH-TEMPERATURE; PACKED-BED; PHYSICAL PROPERTIES; MOLTEN-SALTS; THERMODYNAMIC ANALYSIS; TRANSFER FLUIDS; LATENT-HEAT; STABILITY;
D O I
10.3390/en17143544
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article is a broad literature review of materials used and defined as potential for heat storage processes. Both single-phase and phase-change materials were considered. An important part of this paper is the definition of the toxicity of heat storage materials and other factors that disqualify their use depending on the application. Based on the literature analysis, a methodology was developed for selecting the optimal heat storage material depending on the typical parameters of the process and the method of heat transfer and storage. Based on the presented results, a solution was proposed for three temperature ranges: 100 degrees C (low-temperature storage), 300 degrees C (medium-temperature storage) and 500 degrees C (high-temperature storage). For all defined temperature levels, it is possible to adapt solid, liquid or phase-change materials for heat storage. However, it is essential to consider the characteristics of the specific system and to assess the advantages and disadvantages of the accumulation material used. Rock materials are characterised by similar thermophysical parameters and relatively low prices compared with their universality, while liquid energy storage allows for greater flexibility in power generation while maintaining the operational parameters of the heat source.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Advancements in large-scale energy storage technologies for power systems
    Xie, Jia
    Li, Aikui
    Jin, Yang
    Li, Yalun
    IET ENERGY SYSTEMS INTEGRATION, 2024, 6 : 665 - 667
  • [22] Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials
    Sarbu, Ioan
    Dorca, Alexandru
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (01) : 29 - 64
  • [23] CFD applications for latent heat thermal energy storage: a review
    Al-abidi, Abduljalil A.
    Bin Mat, Sohif
    Sopian, K.
    Sulaiman, M. Y.
    Mohammed, Abdulrahman Th
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 20 : 353 - 363
  • [24] Numerical modeling of large-scale finned tube latent thermal energy storage systems
    Vogel, J.
    Keller, M.
    Johnson, M.
    JOURNAL OF ENERGY STORAGE, 2020, 29
  • [25] Hydrogen-Based Energy Storage Systems for Large-Scale Data Center Applications
    Celestine, Asha-Dee N.
    Sulic, Martin
    Wieliczko, Marika
    Stetson, Ned T.
    SUSTAINABILITY, 2021, 13 (22)
  • [26] A review of potential materials for thermal energy storage in building applications
    Tatsidjodoung, Parfait
    Le Pierres, Nolwenn
    Luo, Lingai
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 18 : 327 - 349
  • [27] Review on thermal energy storage with phase change materials and applications
    Sharma, Atul
    Tyagi, V. V.
    Chen, C. R.
    Buddhi, D.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (02): : 318 - 345
  • [28] A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage
    Nkhonjera, Lameck
    Bello-Ochende, Tunde
    John, Geoffrey
    King'ondu, Cecil K.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 75 : 157 - 167
  • [29] Battery Energy Storage Applications in Wind Integrated Systems - A Review
    Fathima, A. Hina
    Palanisamy, K.
    2014 INTERNATIONAL CONFERENCE ON SMART ELECTRIC GRID (ISEG), 2014,
  • [30] Life-cycle assessment of gravity energy storage systems for large-scale application
    Berrada, Asmae
    Emrani, Anisa
    Ameur, Arechkik
    JOURNAL OF ENERGY STORAGE, 2021, 40