Regularized Stein Variational Gradient Flow

被引:0
|
作者
He, Ye [1 ]
Balasubramanian, Krishnakumar [2 ]
Sriperumbudur, Bharath K. [3 ]
Lu, Jianfeng [4 ]
机构
[1] Georgia Inst Technol, Sch Math, 686 Cherry St, Atlanta, GA 30332 USA
[2] Univ Calif Davis, Dept Stat, 399 Crocker Lane,1 Shields Ave, Davis, CA 95616 USA
[3] Penn State Univ, Dept Stat, 314 Thomas Bldg, University Pk, PA 16802 USA
[4] Duke Univ, Math Dept, Box 90320,120 Sci Dr, Durham, NC 27708 USA
关键词
Wasserstein gradient flow; Stein variational gradient descent; Particle-based sampling; Convergence to equilibrium; Mean-field analysis; Reproducing kernel Hilbert space; Regularization; CONVERGENCE; DIFFUSION; KERNELS;
D O I
10.1007/s10208-024-09663-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The stein variational gradient descent (SVGD) algorithm is a deterministic particle method for sampling. However, a mean-field analysis reveals that the gradient flow corresponding to the SVGD algorithm (i.e., the Stein Variational Gradient Flow) only provides a constant-order approximation to the Wasserstein gradient flow corresponding to the KL-divergence minimization. In this work, we propose the Regularized Stein Variational Gradient Flow, which interpolates between the Stein Variational Gradient Flow and the Wasserstein gradient flow. We establish various theoretical properties of the Regularized Stein Variational Gradient Flow (and its time-discretization) including convergence to equilibrium, existence and uniqueness of weak solutions, and stability of the solutions. We provide preliminary numerical evidence of the improved performance offered by the regularization.
引用
收藏
页数:59
相关论文
共 50 条
  • [41] p-Kernel Stein Variational Gradient Descent for Data Assimilation and History Matching
    Andreas S. Stordal
    Rafael J. Moraes
    Patrick N. Raanes
    Geir Evensen
    Mathematical Geosciences, 2021, 53 : 375 - 393
  • [42] Robust Bayesian Kernel Machine via Stein Variational Gradient Descent for Big Data
    Khanh Nguyen
    Trung Le
    Tu Dinh Nguyen
    Dinh Phung
    Webb, Geoffrey I.
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 2003 - 2011
  • [43] A Stein variational Newton method
    Detommaso, Gianluca
    Cui, Tiangang
    Spantini, Alessio
    Marzouk, Youssef
    Scheichl, Robert
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [44] Stein Variational Probabilistic Roadmaps
    Lambert, Alexander
    Hou, Brian
    Scalise, Rosario
    Srinivasa, Siddhartha S.
    Boots, Byron
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 11094 - 11101
  • [45] Non-Gaussian Parameter Inference for Hydrogeological Models Using Stein Variational Gradient Descent
    Ramgraber, Maximilian
    Weatherl, Robin
    Blumensaat, Frank
    Schirmer, Mario
    WATER RESOURCES RESEARCH, 2021, 57 (04)
  • [46] Annealed stein variational gradient descent for improved uncertainty estimation in full-waveform inversion
    Corrales, Miguel
    Berti, Sean
    Denel, Bertrand
    Williamson, Paul
    Aleardi, Mattia
    Ravasi, Matteo
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2025, 241 (02) : 1088 - 1113
  • [47] STEIN VARIATIONAL GRADIENT DESCENT ON INFINITE-DIMENSIONAL SPACE AND APPLICATIONS TO STATISTICAL INVERSE PROBLEMS
    Jia, Junxiong
    LI, Peijun
    Meng, Deyu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (04) : 2225 - 2252
  • [48] Deep Generative Learning via Variational Gradient Flow
    Gao, Yuan
    Jiao, Yuling
    Wang, Yang
    Wang, Yao
    Yang, Can
    Zhang, Shunkang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [49] Variational Curve Skeletons Using Gradient Vector Flow
    Hassouna, M. Sabry
    Farag, Aly A.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (12) : 2257 - 2274
  • [50] Regularized Gradient Boosting
    Cortes, Corinna
    Mohri, Mehryar
    Storcheus, Dmitry
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32