An Analysis of a Commercial GNSS-R Soil Moisture Dataset

被引:1
|
作者
Al-Khaldi, Mohammad M. [1 ,2 ]
Johnson, Joel T. [1 ,2 ]
Horton, Dustin [1 ,2 ]
McKague, Darren S. [3 ]
Twigg, Dorina [4 ]
Russel, Anthony [4 ]
Policelli, Frederick S. [5 ]
Ouellette, Jeffrey D. [6 ]
Bindlish, Rajat [5 ]
Park, Jeonghwan [5 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, ElectroSci Lab, Columbus, OH 43210 USA
[3] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA
[5] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[6] US Naval Res Lab, Washington, DC 20375 USA
关键词
Soil moisture; Surface roughness; Rough surfaces; Receivers; Reflectivity; Scattering; Surface treatment; Bistatic radar systems; CubeSats; global navigation satellite systems reflectometry (GNSS-R); rough surface scattering; SmallSats; soil moisture; SIGNALS; PREDICTABILITY; REFLECTIONS; SCATTERING; DYNAMICS; SYSTEM; OCEAN; SMOS;
D O I
10.1109/JSTARS.2024.3449773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analysis of a Level-2 (L2) soil moisture record extending from 1 May 2021 to 1 January 2024 derived from Spire, Inc.'s Global Navigation Satellite System Reflectometry (GNSS-R) observatories is presented. The product's sensitivity to large scale soil moisture variability is demonstrated using an example of a 2022 flood in Pakistan. Product consistency among the constellation's multiple satellites is also investigated; no clear evidence of intersatellite biases is observed. Further comparisons are performed with soil moisture datasets from the Soil Moisture Active Passive (SMAP) and Cyclone Global Navigation Satellite System (CYGNSS) missions, from the European Center for Medium-Range Weather Forecasts Reanalysis v5 (ERA5), and from in situ International Soil Moisture Network (ISMN) sites. Although an overall product correlation with SMAP soil moisture of approximately 85$\%$ is determined, per-pixel correlations vary significantly and per-pixel root-mean-square errors (RMSE) can range from 0.02 to 0.09 (cm(3)/cm(3)) depending on land class. The importance of applying the product's quality flags is also demonstrated. The influence of other calibration effects and inland water body contamination on these results is also discussed.
引用
收藏
页码:15480 / 15493
页数:14
相关论文
共 50 条
  • [21] On the Synergy of Airborne GNSS-R and Landsat 8 for Soil Moisture Estimation
    Sanchez, Nilda
    Alonso-Arroyo, Alberto
    Martinez-Fernandez, Jose
    Piles, Maria
    Gonzalez-Zamora, Angel
    Camps, Adriano
    Vall-llosera, Merce
    REMOTE SENSING, 2015, 7 (08): : 9954 - 9974
  • [22] Analysis of Key Issues on GNSS-R Soil Moisture Retrieval Based on Different Antenna Patterns
    Li, Fei
    Peng, Xuefeng
    Chen, Xiuwan
    Liu, Maolin
    Xu, Liwen
    SENSORS, 2018, 18 (08)
  • [23] Evaluation of Spire GNSS-R reflectivity from multiple GNSS constellations for soil moisture estimation
    Setti, Paulo T.
    Tabibi, Sajad
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (20) : 6422 - 6441
  • [24] A Refined Land Type Digitization Method of GNSS-R Soil Moisture Inversion
    Guo F.
    Dong G.
    Zhu Y.
    Zhang X.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (01): : 47 - 55
  • [25] Soil Moisture Retrieval in Southeast China from Spaceborne GNSS-R Measurements
    Dong, Zhounan
    Jin, Shuanggen
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 1961 - 1965
  • [26] AIRBORNE GNSS-R, THERMAL AND OPTICAL DATA RELATIONSHIPS FOR SOIL MOISTURE RETRIEVALS
    Sanchez, N.
    Alonso-Arroyo, A.
    Gonzalez-Zamora, A.
    Martinez-Fernandez, J.
    Camps, A.
    Vall-llosera, M.
    Pablos, M.
    Herrero-Jimenez, C. M.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4785 - 4788
  • [27] A method for retrieving soil moisture from GNSS-R by using experiment data
    毛克彪
    Ma Ying
    Shen Xinyi
    Xia Lang
    Tian Shiying
    Han Jiaqi
    Liu Qing
    HighTechnologyLetters, 2015, 21 (02) : 219 - 223
  • [28] Spaceborne GNSS-R for retrieving soil moisture based on the correction of stage model
    Tao T.
    Li J.
    Zhu Y.
    Wang J.
    Chen H.
    Shi M.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (09): : 1942 - 1950
  • [29] Effective Surface Roughness Impact in Polarimetric GNSS-R Soil Moisture Retrievals
    Munoz-Martin, Joan Francesc
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Oudrhiri, Kamal
    REMOTE SENSING, 2023, 15 (08)
  • [30] ESTIMATING SOIL MOISTURE CONTENT USING GNSS-R TECHNIQUE BASED ON STATISTICS
    Peng, Xuefeng
    Chen, Xiuwan
    Xiao, Han
    Wan, Wei
    Yang, Ting
    Yang, Zhenyu
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2004 - 2007