The Produoidal Algebra of Process Decomposition

被引:0
|
作者
Earnshaw, Matt [1 ]
Hefford, James [2 ]
Roman, Mario [1 ]
机构
[1] Tallinn Univ Technol, Tallinn, Estonia
[2] Univ Oxford, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
monoidal categories; profunctors; lenses; duoidal categories; MONADS; CATEGORIES; GEOMETRY;
D O I
10.4230/LIPIcs.CSL.2024.25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We characterize a universal normal produoidal category of monoidal contexts over an arbitrary monoidal category. In the same sense that a monoidal morphism represents a process, a monoidal context represents an incomplete process: a piece of a decomposition, possibly containing missing parts. In particular, symmetric monoidal contexts coincide with monoidal lenses and endow them with a novel universal property. We apply this algebraic structure to the analysis of multi-party protocols in arbitrary theories of processes.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A note on the decomposition algorithms in differential algebra
    Sadik, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08): : 641 - 646
  • [32] The Levi decomposition of a graded Lie algebra
    Ciatti, Paolo
    Cowling, Michael G.
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2018, 9 (02): : 373 - 378
  • [33] LEBESGUE DECOMPOSITION OF STATES ON A VONNEUMANN ALGEBRA
    KOSAKI, H
    AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (03) : 697 - 735
  • [34] On the group algebra decomposition of a Jacobian variety
    Leslie Jimenez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 185 - 199
  • [35] Graded decomposition numbers for the blob algebra
    Plaza, David
    JOURNAL OF ALGEBRA, 2013, 394 : 182 - 206
  • [36] Type-Decomposition of an Effect Algebra
    Foulis, David J.
    Pulmannova, Sylvia
    FOUNDATIONS OF PHYSICS, 2010, 40 (9-10) : 1543 - 1565
  • [37] On the group algebra decomposition of a Jacobian variety
    Jimenez, Leslie
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (01) : 185 - 199
  • [38] A CANONICAL DECOMPOSITION IN MIXED EXTERIOR ALGEBRA
    VANSTONE, JR
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1984, 36 (02): : 361 - 373
  • [39] Decomposition of the Enveloping Algebra so(5)
    Burdik, Cestmir
    Navratil, Ondrej
    GENERALIZED LIE THEORY IN MATHEMATICS, PHYSICS AND BEYOND, 2009, : 297 - +
  • [40] On the decomposition matrices of the quantized Schur algebra
    Varagnolo, M
    Vasserot, E
    DUKE MATHEMATICAL JOURNAL, 1999, 100 (02) : 267 - 297