The Produoidal Algebra of Process Decomposition

被引:0
|
作者
Earnshaw, Matt [1 ]
Hefford, James [2 ]
Roman, Mario [1 ]
机构
[1] Tallinn Univ Technol, Tallinn, Estonia
[2] Univ Oxford, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
monoidal categories; profunctors; lenses; duoidal categories; MONADS; CATEGORIES; GEOMETRY;
D O I
10.4230/LIPIcs.CSL.2024.25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We characterize a universal normal produoidal category of monoidal contexts over an arbitrary monoidal category. In the same sense that a monoidal morphism represents a process, a monoidal context represents an incomplete process: a piece of a decomposition, possibly containing missing parts. In particular, symmetric monoidal contexts coincide with monoidal lenses and endow them with a novel universal property. We apply this algebraic structure to the analysis of multi-party protocols in arbitrary theories of processes.
引用
收藏
页数:19
相关论文
共 50 条