Wintertime source apportionment of PM2.5 pollution in million plus population cities of India using WRF-Chem simulation

被引:0
|
作者
Jat, Rajmal [1 ,2 ]
Gurjar, Bhola Ram [2 ]
Ghude, Sachin D. [1 ]
Yadav, Prafull P. [1 ,3 ]
机构
[1] Minist Earth Sci, Indian Inst Trop Meteorol, Pune, Maharashtra, India
[2] Indian Inst Technol Roorkee, Dept Civil Engn, Roorkee, Uttarakhand, India
[3] Savitribai Phule Pune Univ, Dept Atmospher & Space Sci, Pune 411007, Maharashtra, India
关键词
Million-plus population cities; Wintertime; PM2.5; pollution; Emission sources; WRF-Chem; TECHNOLOGY-LINKED INVENTORY; AIR-QUALITY; PARTICULATE MATTER; PM1; AEROSOLS; EMISSIONS; MODEL; TRENDS; IMPACTS; URBANIZATION; TRANSPORT;
D O I
10.1007/s40808-024-02119-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Several major Indian cities experience elevated PM2.5 concentrations, particularly during the winter season. Effective air quality management in these densely populated urban areas necessitates a comprehensive understanding of the diverse emission sources contributing to air pollution. This study investigates PM2.5 pollution in 53 million-plus population cities (MPPC's) across India during the winter of 2015-2016 utilizing the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). Multiple model simulations were employed to study the impact of various source sectors on local PM2.5 pollution and their emissions in these cities. The findings indicate significant contributions to local PM2.5 pollution from major emission source sectors in MPPCs. The influence of PM2.5 pollution plumes originating from these cities on regional PM2.5 pollution in India is evident across all sectors. In MPPCs situated in the east, north, and central regions of India, the primary contributors to local PM2.5 pollution include residential and transportation sectors, alongside energy sectors in specific cities marked by elevated emissions from power plants. In the MPPCs of western India, the industrial and energy sectors are identified as the primary contributors to local PM2.5 pollution. Meanwhile, in the MPPCs of south India, the major contributors are identified as industrial and residential sectors. In a comprehensive overview encompassing 53 MPPCs, the primary contributors to local PM2.5 pollution are identified as follows: the energy sector in 7 cities, the industrial sector in 8 cities, the residential sector in 29 cities, and the transportation sector in 9 cities. The correlation between PM2.5 pollution loadings and meteorological parameters reveals that PM2.5 pollution levels in MPPCs are influenced by both local emissions and meteorological factors. Specifically, wind speed and boundary layer height play critical roles in regulating the dispersion of pollution. Consequently, regulating emissions from these cities effectively requires consideration of both the primary emission source sectors and the prevailing meteorological conditions specific to each city's geographical location.
引用
收藏
页码:6065 / 6082
页数:18
相关论文
共 50 条
  • [31] PM2.5 pollution in a megacity of southwest China: source apportionment and implication
    Tao, J.
    Gao, J.
    Zhang, L.
    Zhang, R.
    Che, H.
    Zhang, Z.
    Lin, Z.
    Jing, J.
    Cao, J.
    Hsu, S. -C.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (16) : 8679 - 8699
  • [32] Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model
    Wang, Litao
    Wei, Zhe
    Wei, Wei
    Fu, Joshua S.
    Meng, Chenchen
    Ma, Simeng
    ATMOSPHERIC ENVIRONMENT, 2015, 122 : 723 - 736
  • [33] Enhanced urban PM2.5 prediction: Applying quadtree division and time-series transformer with WRF-chem
    Zhang, Shiyan
    Yu, Manzhu
    ATMOSPHERIC ENVIRONMENT, 2024, 337
  • [34] Elevated PM10 and PM2.5 concentrations in Europe: a model experiment with MM5-CMAQ and WRF-CHEM
    San Jose, R.
    Perez, J. L.
    Morant, J. L.
    Gonzalez, R. M.
    AIR POLLUTION XVI, 2008, 116 : 3 - +
  • [35] Evaluating the sensitivity of fine particulate matter (PM2.5) simulations to chemical mechanism in WRF-Chem over Delhi
    Jat, Rajmal
    Jena, Chinmay
    Yadav, Prafull P.
    Govardhan, Gaurav
    Kalita, Gayatry
    Debnath, Sreyashi
    Gunwani, Preeti
    Acharja, Prodip
    Pawar, Pooja V.
    Sharma, Pratul
    Kulkarni, Santosh H.
    Kulkarni, Akshay
    Kaginalkar, Akshara
    Chate, Dilip M.
    Kumar, Rajesh
    Soni, Vijay Kumar
    Ghude, Sachin D.
    ATMOSPHERIC ENVIRONMENT, 2024, 323
  • [36] Chemical composition and source apportionment of PM2.5 in typical heavy industrial cities
    Qi, Chao-Nan
    Qi, Peng
    Zhang, Yi-Ling
    Zhongguo Huanjing Kexue/China Environmental Science, 2024, 44 (06): : 2994 - 3003
  • [37] Comparison of PM2.5 Chemical Components over East Asia Simulated by the WRF-Chem and WRF/CMAQ Models: On the Models' Prediction Inconsistency
    Choi, Min-Woo
    Lee, Jae-Hyeong
    Woo, Ju-Wan
    Kim, Cheol-Hee
    Lee, Sang-Hyun
    ATMOSPHERE, 2019, 10 (10)
  • [38] Source Apportionment of PM2.5 in Gyeongsan Using the PMF Model
    Jeong, YeongJin
    Hwang, InJo
    JOURNAL OF KOREAN SOCIETY FOR ATMOSPHERIC ENVIRONMENT, 2015, 31 (06) : 508 - 519
  • [39] Source apportionment of PM2.5 in North India using source-oriented air quality models
    Guo, Hao
    Kota, Sri Harsha
    Sahu, Shovan Kumar
    Hu, Jianlin
    Ying, Qi
    Gao, Aifang
    Zhang, Hongliang
    ENVIRONMENTAL POLLUTION, 2017, 231 : 426 - 436
  • [40] Source Apportionment of PM2.5, PAH and Arsenic Air Pollution in Central Bohemia
    Seibert, Radim
    Nikolova, Irina
    Volna, Vladimira
    Krejci, Blanka
    Hladky, Daniel
    ENVIRONMENTS, 2021, 8 (10)