Multilevel metabolic engineering for enhanced synthesis of S-adenosylmethionine by Bacillus amyloliquefaciens

被引:0
|
作者
Jiang, Cong [1 ]
Zou, Dian [1 ]
Ruan, Liying [1 ]
Han, Wenyuan [1 ]
Wei, Xuetuan [1 ]
机构
[1] Huazhong Agr Univ, State Key Lab Agr Microbiol, 1 Shizishan St, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
S-adenosylmethionine; Bacillus amyloliquefaciens; Modular strategy; Metabolic engineering;
D O I
10.1007/s10529-024-03523-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Objectives To enhance the de novo synthesis of SAM, the effects of several key genes on SAM synthesis were examined based on modular strategy, and the key genes were manipulated to obtain an engineered strain with high SAM production. Results In Bacillus amyloliquefaciens HSAM6, the deletion of argG gene to block aspartic acid branching degradation increased SAM titer to 254.78 +/- 15.91 mg/L, up 18% from HSAM6. Subsequently, deleting the moaA gene to boost the supply of 5-methyltetrahydrofolate led to the stunted growth and the plummeting yield of SAM. Further improvement of strain growth by overexpression of the citA gene, while SAM synthesis was not significantly enhanced. Finally, the maximum SAM titer (452.89 +/- 13.42 mg/L) was obtained by overexpression SAM2 gene using the multicopy plasmid. Conclusions The deletion of argG gene and the overexpression of SAM2 gene significantly improved SAM synthesis in B. amyloliquefaciens.
引用
收藏
页码:1155 / 1162
页数:8
相关论文
共 50 条
  • [11] METABOLIC DISORDERS OF S-ADENOSYLMETHIONINE IN CIRRHOSIS OF THE LIVER
    MATO, JM
    DUCE, AM
    ORTIZ, P
    REVISTA CLINICA ESPANOLA, 1988, 182 (01): : 1 - 2
  • [12] S-ADENOSYLMETHIONINE SYNTHESIS IN RAT LENS
    GELLER, AM
    JERNIGAN, HM
    FEDERATION PROCEEDINGS, 1985, 44 (04) : 1225 - 1225
  • [13] Multilevel Metabolic Engineering of Bacillus amyloliquefaciens for Production of the Platform Chemical Putrescine from Sustainable Biomass Hydrolysates
    Li, Lu
    Zou, Dian
    Ji, Anying
    He, Yuxuan
    Liu, Yingli
    Deng, Yu
    Chen, Shouwen
    Wei, Xuetuan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (05): : 2147 - 2157
  • [14] Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine
    Finkelstein, James D.
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2007, 45 (12) : 1694 - 1699
  • [15] S-adenosylmethionine synthesis in Leishmania infantum promastigotes
    Reguera, RM
    Pérez-Pertejo, Y
    Ordóñez, C
    Cubría, JC
    Tekwani, BL
    Balaña-Fouce, R
    Ordóñez, D
    CELL BIOLOGY INTERNATIONAL, 1999, 23 (08) : 579 - 583
  • [16] EFFECT OF PUTRESCINE ON THE SYNTHESIS OF S-ADENOSYLMETHIONINE DECARBOXYLASE
    KAMEJI, T
    PEGG, AE
    BIOCHEMICAL JOURNAL, 1987, 243 (01) : 285 - 288
  • [17] Engineered Pichia pastoris for enhanced production of S-adenosylmethionine
    Venu Kamarthapu
    Srinivas Ragampeta
    Khareedu Venkateswara Rao
    Vudem Dashavantha Reddy
    AMB Express, 3
  • [18] SYNTHESIS OF S-ADENOSYLMETHIONINE DECARBOXYLASE (ADOMETDC) INVITRO
    PEGG, AE
    SHIRAHATA, A
    FEDERATION PROCEEDINGS, 1986, 45 (06) : 1731 - 1731
  • [19] Engineered Pichia pastoris for enhanced production of S-adenosylmethionine
    Kamarthapu, Venu
    Ragampeta, Srinivas
    Rao, Khareedu Venkateswara
    Reddy, Vudem Dashavantha
    AMB EXPRESS, 2013, 3
  • [20] S-adenosylmethionine biosynthesis is a targetable metabolic vulnerability in multiple myeloma
    Wang, Yanmeng
    Maes, Anke
    De Veirman, Kim
    Vanderkerken, Karin
    Menu, Eline
    De Bruyne, Elke
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2022, 22 : S99 - S99