Network pharmacology and molecular docking analysis predict the mechanisms of Huangbai liniment in treating oral lichen planus

被引:1
|
作者
Chang, Wei [1 ]
Shi, Jing [2 ]
Li, Lingzhi [1 ]
Zhang, Ping [3 ]
Ren, Yanrong [1 ]
Yan, Yan [4 ]
Ge, Yana [1 ]
机构
[1] Changzhi Med Coll, Changzhi Peoples Hosp 2, Dept Stomatol, Changzhi 046000, Peoples R China
[2] Shanxi Prov Peoples Hosp, Dept Stomatol, Taiyuan, Peoples R China
[3] Changzhi Med Coll, Heji Hosp, Dept Stomatol, Changzhi, Peoples R China
[4] Heilongjiang Univ Chinese Med, Harbin, Peoples R China
关键词
Huangbai liniment; molecular docking; network pharmacological; oral lichen planus; TUMOR-NECROSIS-FACTOR; SIGNALING PATHWAY; INTERLEUKIN-6; DISEASE; CANCER; ALPHA;
D O I
10.1097/MD.0000000000039352
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This study explored the mechanism of Huangbai liniment (HB) for the treatment of oral lichen planus (OLP) through network pharmacology and molecular docking techniques. The study identified HB' active ingredients, therapeutic targets for OLP, and associated signaling pathways. The chemical composition of HB was screened using the HERB database. The disease targets of OLP were obtained through the GeneCards and OMIM databases. A protein-protein interactions network was constructed with the String platform. Topological analysis was performed using Cytoscape software to identify core targets. Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were performed using the Hiplot database, and the active ingredients and core targets were verified by molecular docking. Date analysis showed that the active composition of HB in the treatment of OLP were quercetin, wogonin, kaempferol, and luteolin. This survey identified 10 potential therapeutic targets, including TNF, CXCL8, IL-6, IL1B, PIK3R1, ESR1, JUN, AKT1, PIK3CA, and CTNNB1. Molecular docking revealed stable interactions between OLP' key targets and HB. These key targets were predominantly involved in the PI3K-Akt signaling pathway, AGE-RAGE signaling pathway, TNF signaling pathway, and HIF-1 signaling pathway. HB plays a crucial role in the treatment of OLP, acting on multiple targets and pathways, particularly the PI3K-Akt signaling pathway. It regulated biological processes like the proliferation of epithelial cells and lymphocytes and mediates the expression of transcription factors, cytokines, and chemokines. Therefore, this study provides a theoretical basis for the clinical trial and application of HB in the therapy of OLP.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Analysis of mechanisms of Shenhuang Granule in treating severe COVID-19 based on network pharmacology and molecular docking
    Xu, Xiang-ru
    Zhang, Wen
    Wu, Xin-xin
    Yang, Hong-qiang
    Sun, Yu-ting
    Pu, Yu-ting
    Wang, Bei
    Peng, Wei
    Sun, Li-hua
    Guo, Quan
    Zhou, Shuang
    Fang, Bang-jiang
    JOURNAL OF INTEGRATIVE MEDICINE-JIM, 2022, 20 (06): : 561 - 574
  • [12] Molecular analysis of oral lichen planus - A premalignant lesion?
    Zhang, LW
    Michelsen, C
    Cheng, X
    Zeng, T
    Priddy, R
    Rosin, MP
    AMERICAN JOURNAL OF PATHOLOGY, 1997, 151 (02): : 323 - 327
  • [13] Potential mechanisms of Pyrrosiae Folium in treating prostate cancer based on network pharmacology and molecular docking
    Guo, Wen-Hua
    Zhang, Kun
    Yang, Lu-Hong
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2022, 48 (05) : 189 - 197
  • [14] Network pharmacology and molecular docking approaches predict the mechanisms of Corididius chinensis in treating manganese-induced nervous system diseases: A review
    Zhang, Mei
    Lou, Huixian
    Ma, Jing
    Xiong, Keyi
    Hou, Xiaohui
    MEDICINE, 2023, 102 (43) : E35669
  • [15] Exploring the Molecular Mechanisms of Astragalus membranaceus in Treating Pre-eclampsia using Network Pharmacology and Molecular Docking
    Zhong, Jing
    Lan, Liubing
    LETTERS IN DRUG DESIGN & DISCOVERY, 2024, 21 (09) : 1582 - 1592
  • [16] Investigating the Molecular Mechanisms of Resveratrol in Treating Cardiometabolic Multimorbidity: A Network Pharmacology and Bioinformatics Approach with Molecular Docking Validation
    Gong, Wei
    Sun, Peng
    Li, Xiujing
    Wang, Xi
    Zhang, Xinyu
    Cui, Huimin
    Yang, Jianjun
    NUTRIENTS, 2024, 16 (15)
  • [17] Network Pharmacology and Experimental Validation to Explore the Molecular Mechanisms of Compound Huangbai Liquid for the Treatment of Acne
    Di, Huifeng
    Liu, Hui
    Xu, Shuna
    Yi, Na
    Wei, Guangchen
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2023, 17 : 39 - 53
  • [18] Molecular Mechanisms of Dietary Bioactive Peptides in Treating Alzheimer's Disease and Mild Cognitive Impairment by Network Pharmacology and Molecular Docking Analysis
    Li, Ruirui
    Zi, Jing
    Hu, Yifan
    Li, Xinlong
    Cao, Qianqian
    Li, Yanliu
    Wang, Xiaoyu
    Xiong, Jingyuan
    Cheng, Guo
    REJUVENATION RESEARCH, 2025,
  • [19] Molecular mechanisms of Huanglian Jiedu decoction in treating Alzheimer's disease by regulating microbiome via network pharmacology and molecular docking analysis
    Zheng, Renyuan
    Shi, Shenggan
    Zhang, Qin
    Yuan, Shuqin
    Guo, Tong
    Guo, Jinlin
    Jiang, Peidu
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [20] Investigation on the mechanisms of guiqi huoxue capsule for treating cervical spondylosis based on network pharmacology and molecular docking
    Liu, Yingying
    Zhang, Jingyuan
    Liu, Xinkui
    Zhou, Wei
    Stalin, Antony
    Fu, Changgeng
    Wu, Jiarui
    Cheng, Guoliang
    Guo, Siyu
    Jia, Shanshan
    Li, Bingbing
    Wang, Haojia
    Li, Jialin
    Lu, Shan
    MEDICINE, 2021, 100 (37)