Fault Diagnosis of High-Speed Train Motors Based on a Multidimensional Belief Rule Base

被引:0
|
作者
Gao, Zhi [1 ,2 ]
He, Meixuan [3 ]
Zhang, Xinming [1 ,4 ]
Hu, Guanyu [5 ,6 ]
He, Weidong [2 ]
Chen, Siyu [2 ]
机构
[1] Changchun Univ Sci & Technol, Mech & Elect Engn Coll, Changchun 130022, Peoples R China
[2] Changchun Univ Technol, Sch Mechatron Engn, Changchun 130012, Peoples R China
[3] Changchun Univ Technol, Coll Comp Sci & Engn, Changchun 130012, Peoples R China
[4] Foshan Univ, Sch Mechatron Engn & Automat, Foshan 528001, Peoples R China
[5] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
[6] Guilin Univ Elect Technol, Sch Software Engn, Guilin 541004, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Fault diagnosis; Motors; Gears; Accuracy; Reliability; Complex systems; Data models; Rail transportation; High-speed rail transportation; Safety; Adaptation models; Complexity theory; Covariance matrices; Running gear; belief rule base; fault diagnosis; PREDICTION; MODEL; SYSTEM;
D O I
10.1109/ACCESS.2024.3452641
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The safe operation of high-speed rail running gear is crucial, as fault diagnosis can effectively prevent potential risks and ensure the smooth operation of the train. The Belief Rule Base (BRB) method has demonstrated excellent performance in complex system modeling. However, during the optimization process, BRB may lead to a "combinatorial explosion" of rules within the model, resulting in a loss of model interpretability and an increase in complexity. To address this, a Multidimensional Belief Rule Base (MBRB) fault diagnosis method is proposed. By optimizing the structure and parameters, the interpretability of the model is enhanced, and its complexity is reduced. Specifically, the model inputs are decomposed into multiple dimensions for analysis, and then the MBRB rules are updated using the Projection Covariance Matrix Adaption Evolution Strategy (P-CMA-ES), increasing the model's interpretability and accuracy. Finally, the effectiveness of this method is validated through an example of high-speed rail running gear.
引用
收藏
页码:122544 / 122556
页数:13
相关论文
共 50 条
  • [31] A Model for Flywheel Fault Diagnosis Based on Fuzzy Fault Tree Analysis and Belief Rule Base
    Cheng, Xiaoyu
    Liu, Shanshan
    He, Wei
    Zhang, Peng
    Xu, Bing
    Xie, Yawen
    Song, Jiayuan
    MACHINES, 2022, 10 (02)
  • [32] Multi-fault diagnosis method of high-speed train battery packs base on DFD-DBSCAN
    Xiang, Chaoqun
    Xi, Zhen
    Zuo, Mingjie
    Bi, Fuliang
    Cheng, Shu
    Yu, Tianjian
    Journal of Railway Science and Engineering, 2024, 21 (07) : 2980 - 2988
  • [33] Fault diagnosis for high-speed train braking system based on disentangled causal representation learning
    Wang, Chong
    Liu, Jie
    EXPERT SYSTEMS, 2023, 40 (03)
  • [34] Fault Diagnosis of High-speed Train Bogie Based on Spectrogram and Multi-channel Voting
    Su, Liyuan
    Ma, Lei
    Qin, Na
    Huang, Deqing
    Kemp, Andrew
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 22 - 26
  • [35] Monitoring data-based automatic fault diagnosis for the brake pipe of high-speed train
    Xie, Guo
    Ye, Minying
    Hei, Xinhong
    Qian, Fucai
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2018, 57 (03) : 246 - 254
  • [36] EEMD Based Incipient Fault Diagnosis for Sensors Faults in High-Speed Train Traction Systems
    Sun, Xiuwen
    Mao, Zehui
    Jiang, Bin
    Li, Min
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 4804 - 4809
  • [37] CNN-based Fault Diagnosis of High-speed Train with Imbalance Data: A Comparison Study
    Wu, Yunpu
    Jin, Weidong
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 5053 - 5058
  • [38] A Novel Fault Diagnosis Method of High-Speed Train Based on Few-Shot Learning
    Wu, Yunpu
    Chen, Jianhua
    Lei, Xia
    Jin, Weidong
    ENTROPY, 2024, 26 (05)
  • [39] Research Of High-Speed Train Fault Diagnosis System Based On Multi-Agent Platform
    Fang Bin
    Feng XiaoFeng
    Xu Shuo
    2018 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2018), 2018, : 237 - 241
  • [40] Intelligent Fault Diagnosis of the High-Speed Train With Big Data Based on Deep Neural Networks
    Hu, Hexuan
    Tang, Bo
    Gong, Xuejiao
    Wei, Wei
    Wang, Huihui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (04) : 2106 - 2116