A physics-informed neural SDE network for learning cellular dynamics from time-series scRNA-seq data

被引:1
|
作者
Jiang, Qi [1 ,2 ]
Wan, Lin [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, 55 Zhongguancun East Rd, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1093/bioinformatics/btae400
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Learning cellular dynamics through reconstruction of the underlying cellular potential energy landscape (aka Waddington landscape) from time-series single-cell RNA sequencing (scRNA-seq) data is a current challenge. Prevailing data-driven computational methods can be hampered by the lack of physical principles to guide learning from complex data, resulting in reduced prediction accuracy and interpretability when applied to infer cell population dynamics.Results: Here, we propose PI-SDE, a physics-informed neural stochastic differential equation (SDE) framework that combines the Hamilton-Jacobi (HJ) equation and neural SDE to learn cellular dynamics. Grounded in potential energy theory of biological systems, PI-SDE integrates the principle of least action by enforcing the HJ equation when reconstructing cellular potential energy function. This approach not only facilitates accurate predictions, but also improves interpretability, especially in the reconstructed potential energy landscape. Through benchmarking on two real scRNA-seq datasets, we demonstrate the importance of incorporating the HJ regularization term in dynamic inference, especially in predicting gene expression at held-out time points. Meanwhile, the learned potential energy landscape provides biologically interpretable insights into the process of cell differentiation. Our framework enhances model performance, while maintaining robustness and stability.Availability: PI-SDE software is available at https://github.com/QiJiang-QJ/PI-SDE.
引用
收藏
页码:ii120 / ii127
页数:8
相关论文
共 50 条
  • [21] Learning thermoacoustic interactions in combustors using a physics-informed neural network
    Mariappan, Sathesh
    Nath, Kamaljyoti
    Karniadakis, George Em
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 138
  • [22] Point neuron learning: a new physics-informed neural network architecture
    Bi, Hanwen
    Abhayapala, Thushara D.
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2024, 2024 (01):
  • [23] Transfer Learning and Physics-informed Neural Network for Temperature Field Reconstruction
    Li, Dike
    Liu, Zhongxin
    Qiu, Lu
    Tao, Zhi
    Zhu, Jianqin
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2023, 44 (04): : 1088 - 1095
  • [24] Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data
    Wu, Wenming
    Ma, Xiaoke
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (01) : 566 - 575
  • [25] A Physics-Informed Neural Network Approach to Augmented Dynamics Visual Servoing of Multirotors
    Kamath, Archit Krishna
    Anavatti, Sreenatha G.
    Feroskhan, Mir
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, : 6319 - 6332
  • [26] Neural Network Learning: Crustal State Estimation Method from Time-Series Data
    Okada, Akihisa
    Kaneda, Yoshiyuki
    2018 INTERNATIONAL CONFERENCE ON CONTROL, ARTIFICIAL INTELLIGENCE, ROBOTICS & OPTIMIZATION (ICCAIRO), 2018, : 141 - 146
  • [27] Efficient Physics-Informed Neural Network for Ultrashort Pulse Dynamics in Optical Fibers
    Wu, Jinhong
    Wang, Zimiao
    Chen, Ruifeng
    Li, Qian
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2025, 43 (03) : 1372 - 1380
  • [28] PND: Physics-informed neural-network software for molecular dynamics applications
    Razakh, Taufeq Mohammed
    Wang, Beibei
    Jackson, Shane
    Kalia, Rajiv K.
    Nakano, Aiichiro
    Nomura, Ken-ichi
    Vashishta, Priya
    SOFTWAREX, 2021, 15
  • [29] A PHYSICS-INFORMED NEURAL NETWORK SURROGATE MODEL FOR MISTUNED BLADED DISKS DYNAMICS
    Fan, Y.
    Fari, J. S.
    Li, A. L.
    Wu, Y. G.
    Zhang, Y. N.
    Song, Z. Q.
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 10B, 2024,
  • [30] A Physics-Informed Neural Network Approach to Augmented Dynamics Visual Servoing of Multirotors
    Kamath, Archit Krishna
    Anavatti, Sreenatha G.
    Feroskhan, Mir
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (11) : 6319 - 6332