FruitSeg30_Segmentation dataset & mask annotations: A novel dataset for diverse fruit segmentation and classification

被引:0
|
作者
Shamrat, F. M. Javed Mehedi [1 ]
Shakil, Rashiduzzaman [2 ]
Idris, Mohd Yamani Idna [1 ]
Akter, Bonna [2 ]
Zhou, Xujuan [3 ]
机构
[1] Univ Malaya, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia
[2] Daffodil Int Univ, Dept Comp Sci & Engn, Daffodil Smart City DSC, Dhaka 1216, Bangladesh
[3] Univ Southern Queensland, Sch Business, Springfield, Australia
来源
DATA IN BRIEF | 2024年 / 56卷
关键词
Fruit segmentation; Deep learning; Image classification; Dataset diversity; Data annotation; Computer vision; Fruit image; Agriculture automation;
D O I
10.1016/j.dib.2024.110821
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fruits are mature ovaries of flowering plants that are integral to human diets, providing essential nutrients such as vitamins, minerals, fiber and antioxidants that are crucial for health and disease prevention. Accurate classification and segmentation of fruits are crucial in the agricultural sector for enhancing the efficiency of sorting and quality control processes, which significantly benefit automated systems by reducing labor costs and improving product consistency. This paper introduces the "FruitSeg30_Segmentation Dataset & Mask Annotations", a novel dataset designed to advance the capability of deep learning models in fruit segmentation and classification. Comprising 1969 high-quality images across 30 distinct fruit classes, this dataset provides diverse visuals essential for a robust model. Utilizing a U-Net architecture, the model trained on this dataset achieved training accuracy of 94.72 %, validation accuracy of 92.57 %, precision of 94 %, recall of 91 %, f1-score of 92.5 %, IoU score of 86 %, and maximum dice score of 0.9472, demonstrating superior performance in segmentation tasks. The FruitSeg30 dataset fills a critical gap and sets new standards in dataset quality and diversity, enhancing agricultural technology and food industry applications. (c) 2024 The Authors. Published by Elsevier Inc.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] BreastDM: A DCE-MRI dataset for breast tumor image segmentation and classification
    Zhao, Xiaoming
    Liao, Yuehui
    Xie, Jiahao
    He, Xiaxia
    Zhang, Shiqing
    Wang, Guoyu
    Fang, Jiangxiong
    Lu, Hongsheng
    Yu, Jun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [22] The DeepFish computer vision dataset for fish instance segmentation, classification, and size estimation
    Garcia-d'Urso, Nahuel
    Galan-Cuenca, Alejandro
    Perez-Sanchez, Paula
    Climent-Perez, Pau
    Fuster-Guillo, Andres
    Azorin-Lopez, Jorge
    Saval-Calvo, Marcelo
    Guillen-Nieto, Juan Eduardo
    Soler-Capdepon, Gabriel
    SCIENTIFIC DATA, 2022, 9 (01)
  • [23] NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer
    Amgad, Mohamed
    Atteya, Lamees A.
    Hussein, Hagar
    Mohammed, Kareem Hosny
    Hafiz, Ehab
    Elsebaie, Maha A. T.
    Alhusseiny, Ahmed M.
    AlMoslemany, Mohamed Atef
    Elmatboly, Abdelmagid M.
    Pappalardo, Philip A.
    Sakr, Rokia Adel
    Mobadersany, Pooya
    Rachid, Ahmad
    Saad, Anas M.
    Alkashash, Ahmad M.
    Ruhban, Inas A.
    Alrefai, Anas
    Elgazar, Nada M.
    Abdulkarim, Ali
    Farag, Abo-Alela
    Etman, Amira
    Elsaeed, Ahmed G.
    Alagha, Yahya
    Amer, Yomna A.
    Raslan, Ahmed M.
    Nadim, Menatalla K.
    Elsebaie, Mai A. T.
    Ayad, Ahmed
    Hanna, Liza E.
    Gadallah, Ahmed
    Elkady, Mohamed
    Drumheller, Bradley
    Jaye, David
    Manthey, David
    Gutman, David A.
    Elfandy, Habiba
    Cooper, Lee A. D.
    GIGASCIENCE, 2022, 11
  • [24] NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer
    Amgad, Mohamed
    Atteya, Lamees A.
    Hussein, Hagar
    Mohammed, Kareem Hosny
    Hafiz, Ehab
    Elsebaie, Maha A. T.
    Alhusseiny, Ahmed M.
    AlMoslemany, Mohamed Atef
    Elmatboly, Abdelmagid M.
    Pappalardo, Philip A.
    Sakr, Rokia Adel
    Mobadersany, Pooya
    Rachid, Ahmad
    Saad, Anas M.
    Alkashash, Ahmad M.
    Ruhban, Inas A.
    Alrefai, Anas
    Elgazar, Nada M.
    Abdulkarim, Ali
    Farag, Abo-Alela
    Etman, Amira
    Elsaeed, Ahmed G.
    Alagha, Yahya
    Amer, Yomna A.
    Raslan, Ahmed M.
    Nadim, Menatalla K.
    Elsebaie, Mai A. T.
    Ayad, Ahmed
    Hanna, Liza E.
    Gadallah, Ahmed
    Elkady, Mohamed
    Drumheller, Bradley
    Jaye, David
    Manthey, David
    Gutman, David A.
    Elfandy, Habiba
    Cooper, Lee A. D.
    GIGASCIENCE, 2022, 11
  • [25] DaliWS: A High-Resolution Dataset with Precise Annotations for Water Segmentation in Synthetic Aperture Radar Images
    Zhang, Shanshan
    Li, Weibin
    Wang, Rongfang
    Liang, Chenbin
    Feng, Xihui
    Hu, Yanhua
    REMOTE SENSING, 2024, 16 (04)
  • [26] Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
    Cychnerski, Jan
    Dziubich, Tomasz
    NEW TRENDS IN DATABASE AND INFORMATION SYSTEMS, ADBIS 2021, 2021, 1450 : 205 - 216
  • [27] CVRP: A rice image dataset with high-quality annotations for image segmentation and plant phenomics research
    Tang, Zhiyan
    Sun, Jiandong
    Tian, Yunlu
    Xu, Jiexiong
    Zhao, Weikun
    Jiang, Gang
    Deng, Jiaqi
    Gan, Xiangchao
    PLANT PHENOMICS, 2025, 7 (01):
  • [28] ENSeg: A Novel Dataset and Method for the Segmentation of Enteric Neuron Cells on Microscopy Images
    Felipe, Gustavo Zanoni
    Nanni, Loris
    Garcia, Isadora Goulart
    Zanoni, Jacqueline Nelisis
    da Costa, Yandre Maldonado e Gomes
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [29] Burned area semantic segmentation: A novel dataset and evaluation using convolutional networks
    Ribeiro, Tiago F. R.
    Silva, Fernando
    Moreira, Jose
    Costa, Rogerio Luis de C.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 202 : 565 - 580
  • [30] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach
    Xu, Xingqian
    Zhang, Zhifei
    Wang, Zhaowen
    Price, Brian
    Wang, Zhonghao
    Shi, Humphrey
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12040 - 12050