Recurrent feature supplementation network for video super-resolution

被引:0
|
作者
Li, Guo-Fang [1 ]
Zhu, Yong-Gui [2 ]
机构
[1] Commun Univ China, Sch Informat & Commun Engn, Beijing, Peoples R China
[2] Commun Univ China, Sch Data Sci & Media Intelligence, Beijing 100024, Peoples R China
基金
中国国家自然科学基金;
关键词
Hsieh; Sun-Yuan; Xu; Li; Video super-resolution; feature supplementation mechanism; temporal grouping; temporal fusion;
D O I
10.1080/02533839.2024.2383573
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Efficient aggregation of temporal information is the basis for achieving video super-resolution. Most researchers have employed alignment or propagation to exploit the temporal information of consecutive frames. However, they frequently overlook the centrality of the reference frame in the model reconstruction when using temporal features. Thus, in this paper, we design a novel recurrent feature supplementation network. We divide the temporal information into three parts: surrounding, back propagation and forward propagation, and extract and fuse them separately. A new grouping approach is proposed for extracting features from the reference frame and its surroundings. The backward temporal fusion module and the forward temporal fusion module are designed to aggregate the backward and forward temporal information at a distance. The temporal fusion module is designed to aggregate temporal information from different parts. Moreover, we propose a feature supplementation mechanism to improve the stability of the model. The feature supplement module is devised to improve the utilization of input features and the stability of the model. Experiments demonstrate that our model achieves the state-of-the-art performance.
引用
收藏
页码:888 / 900
页数:13
相关论文
共 50 条
  • [31] Contextual Feature Modulation Network for Efficient Super-Resolution
    Zhang, Wandi
    Shen, Hao
    Zhang, Biao
    Tian, Weidong
    Zhao, Zhong-Qiu
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VI, ICIC 2024, 2024, 14867 : 15 - 26
  • [32] An efficient and lightweight image super-resolution with feature network
    Zang, Yongsheng
    Zhou, Dongming
    Wang, Changcheng
    Nie, Rencan
    Guo, Yanbu
    OPTIK, 2022, 255
  • [33] Residual Feature Aggregation Network for Image Super-Resolution
    Liu, Jie
    Zhang, Wenjie
    Tang, Yuting
    Tang, Jie
    Wu, Gangshan
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2356 - 2365
  • [34] Residual Local Feature Network for Efficient Super-Resolution
    Kong, Fangyuan
    Li, Mingxi
    Liu, Songwei
    Liu, Ding
    He, Jingwen
    Bai, Yang
    Chen, Fangmin
    Fu, Lean
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 765 - 775
  • [35] Feature Preserving and Enhancing Network for Image Super-Resolution
    Su, Minglan
    Li, Xinchi
    Xu, Jiaoyang
    Yang, Mingchuan
    Zhang, Chaoying
    IEEE ACCESS, 2023, 11 : 132867 - 132877
  • [36] Web Georeferenced Video Player with Super-Resolution Screenshot Feature
    Rodriguez, Jorge
    Quesada-Arencibia, Alexis
    Horat, David
    Quevedo, Eduardo
    COMPUTER AIDED SYSTEMS THEORY, PT II, 2013, 8112 : 87 - 92
  • [37] Residual trio feature network for efficient super-resolution
    Chen, Junfeng
    Mao, Mao
    Guan, Azhu
    Ayush, Altangerel
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [38] Feature Fusion Attention Network for Image Super-resolution
    Zhou D.-W.
    Ma L.-Y.
    Tian J.-Y.
    Sun X.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (09): : 2233 - 2241
  • [39] Recursive Feature Diversity Network for audio super-resolution
    Jiang, Bo
    Hou, Mixiao
    Wang, Jiahuan
    Lu, Yao
    Zhang, David
    Lu, Guangming
    SPEECH COMMUNICATION, 2022, 144 : 57 - 66
  • [40] Adaptive Feature Consolidation Network for Burst Super-Resolution
    Mehta, Nancy
    Dudhane, Akshay
    Murala, Subrahmanyam
    Zamir, Syed Waqas
    Khan, Salman
    Khan, Fahad Shahbaz
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1278 - 1285