A physics-informed data-driven fault location method for transmission lines using single-ended measurements with field data validation

被引:0
|
作者
Zou, Xinchen [1 ]
Xing, Yiqi [1 ]
Lu, Dayou [1 ]
He, Xuming [1 ]
Liu, Yu [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault location; Field data; Physics-informed data-driven; Single-ended; DYNAMIC STATE ESTIMATION;
D O I
10.1016/j.epsr.2024.110943
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data driven transmission line fault location methods have the potential to more accurately locate faults by extracting fault information from available data. However, most of the data driven fault location methods in the literature are not validated by field data for the following reasons. On one hand, the available field data during faults are very limited for one specific transmission line, and using field data for training is close to impossible. On the other hand, if simulation data are utilized for training, the mismatch between the simulation system and the practical system will cause fault location errors. To this end, this paper proposes a physics-informed datadriven fault location method. The data from a practical fault event are first analyzed to extract the ranges of system parameters such as equivalent source impedances, loading conditions, fault inception angles (FIA) and fault resistances. Afterwards, the simulation system is constructed with the ranges of parameters, to generate data for training. This procedure merges the gap between simulation and practical power systems, and at the same time considers the uncertainty of system parameters in practice. The proposed data-driven method does not require system parameters, only requires instantaneous voltage and current measurements at the local terminal, with a low sampling rate of several kHz and a short fault time window of half a cycle before and after the fault occurs. Numerical experiments and field data experiments clearly validate the advantages of the proposed method over existing data driven methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Data-driven modeling of Landau damping by physics-informed neural networks
    Qin, Yilan
    Ma, Jiayu
    Jiang, Mingle
    Dong, Chuanfei
    Fu, Haiyang
    Wang, Liang
    Cheng, Wenjie
    Jin, Yaqiu
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [32] Regulating the development of accurate data-driven physics-informed deformation models
    Newman, Will
    Ghaboussi, Jamshid
    Insana, Michael
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [33] Data-driven building energy efficiency prediction using physics-informed neural networks
    Michalakopoulos, Vasilis
    Pelekis, Sotiris
    Kormpakis, Giorgos
    Karakolis, Vagelis
    Mouzakitis, Spiros
    Askounis, Dimitris
    2024 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY, SUSTECH, 2024, : 84 - 91
  • [34] Physics-informed Data-driven Communication Performance Prediction for Underwater Vehicles
    Chitre, Mandar
    Li Kexin
    2022 SIXTH UNDERWATER COMMUNICATIONS AND NETWORKING CONFERENCE (UCOMMS), 2022,
  • [35] Physics-Informed Data-Driven Modeling for Engine Volumetric Efficiency Estimation
    Li, Qian
    Guo, Fan
    Song, Kang
    Xie, Hui
    Zhou, Shengkai
    Sang, Hailang
    IFAC PAPERSONLINE, 2024, 58 (29): : 403 - 408
  • [36] Physics-informed data-driven model for fluid flow in porous media
    Kazemi, Mohammad
    Takbiri-Borujeni, Ali
    Takbiri, Sam
    Kazemi, Arefeh
    COMPUTERS & FLUIDS, 2023, 264
  • [37] A physics-informed data-driven approach for forecasting bifurcations in dynamical systems
    Jesús García Pérez
    Leonardo Sanches
    Amin Ghadami
    Guilhem Michon
    Bogdan I. Epureanu
    Nonlinear Dynamics, 2023, 111 : 11773 - 11789
  • [38] Physics-informed optimization for a data-driven approach in landslide susceptibility evaluation
    Liu, Songlin
    Wang, Luqi
    Zhang, Wengang
    Sun, Weixin
    Wang, Yunhao
    Liu, Jianping
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2024, 16 (08) : 3192 - 3205
  • [39] Data-driven discovery of turbulent flow equations using physics-informed neural networks
    Yazdani, Shirindokht
    Tahani, Mojtaba
    PHYSICS OF FLUIDS, 2024, 36 (03)