A physics-informed data-driven fault location method for transmission lines using single-ended measurements with field data validation

被引:0
|
作者
Zou, Xinchen [1 ]
Xing, Yiqi [1 ]
Lu, Dayou [1 ]
He, Xuming [1 ]
Liu, Yu [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault location; Field data; Physics-informed data-driven; Single-ended; DYNAMIC STATE ESTIMATION;
D O I
10.1016/j.epsr.2024.110943
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data driven transmission line fault location methods have the potential to more accurately locate faults by extracting fault information from available data. However, most of the data driven fault location methods in the literature are not validated by field data for the following reasons. On one hand, the available field data during faults are very limited for one specific transmission line, and using field data for training is close to impossible. On the other hand, if simulation data are utilized for training, the mismatch between the simulation system and the practical system will cause fault location errors. To this end, this paper proposes a physics-informed datadriven fault location method. The data from a practical fault event are first analyzed to extract the ranges of system parameters such as equivalent source impedances, loading conditions, fault inception angles (FIA) and fault resistances. Afterwards, the simulation system is constructed with the ranges of parameters, to generate data for training. This procedure merges the gap between simulation and practical power systems, and at the same time considers the uncertainty of system parameters in practice. The proposed data-driven method does not require system parameters, only requires instantaneous voltage and current measurements at the local terminal, with a low sampling rate of several kHz and a short fault time window of half a cycle before and after the fault occurs. Numerical experiments and field data experiments clearly validate the advantages of the proposed method over existing data driven methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A new fault location algorithm for jointed four transmission lines based on single-ended data
    Ren, Ming-Zhu
    Tai, Neng-Ling
    Yuan, Cheng
    Xiong, Chao-Ying
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2009, 43 (08): : 1228 - 1232
  • [2] Partially coupled transmission line fault location using single-ended measurements
    Duan, Mengzhao
    Ye, Aoshuang
    Liu, Yu
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 233
  • [3] Precise Traveling Wave-Based Transmission Line Fault Location Method Using Single-Ended Data
    Naidu, O. D.
    Pradhan, Ashok Kumar
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5197 - 5207
  • [4] Single-ended Time Domain Fault Location Based on Transient Signal Measurements of Transmission Lines
    Luo, Jian
    Liu, Yao
    Cui, Qiushi
    Zhong, Jiayong
    Zhang, Lin
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2024, 9 (02) : 61 - 74
  • [5] A physics-informed data-driven approach for consolidation analysis
    Zhang, Pin
    Yin, Zhen-Yu
    Sheil, Brian
    GEOTECHNIQUE, 2022, 74 (07): : 620 - 631
  • [6] Benchmarking physics-informed frameworks for data-driven hyperelasticity
    Vahidullah Taç
    Kevin Linka
    Francisco Sahli-Costabal
    Ellen Kuhl
    Adrian Buganza Tepole
    Computational Mechanics, 2024, 73 : 49 - 65
  • [7] Benchmarking physics-informed frameworks for data-driven hyperelasticity
    Tac, Vahidullah
    Linka, Kevin
    Sahli-Costabal, Francisco
    Kuhl, Ellen
    Tepole, Adrian Buganza
    COMPUTATIONAL MECHANICS, 2024, 73 (01) : 49 - 65
  • [8] Physics-Informed Data-Driven Autoregressive Nonlinear Filter
    Liu, Hanyu
    Sun, Xiucong
    Chen, Yuran
    Wang, Xinlong
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 846 - 850
  • [9] On extraction, ranking and selection of data-driven and physics-informed features for bearing fault diagnostics
    Mohamad, T. Haj
    Abbasi, A.
    Kappaganthu, K.
    Nataraj, C.
    KNOWLEDGE-BASED SYSTEMS, 2023, 276
  • [10] A novel principle of single-ended fault location technique for EHV transmission lines
    Ha, HX
    Zhang, BH
    Lv, ZL
    IEEE TRANSACTIONS ON POWER DELIVERY, 2003, 18 (04) : 1147 - 1151