Theory for proton-coupled energy transfer

被引:1
|
作者
Cui, Kai [1 ]
Hammes-Schiffer, Sharon [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 161卷 / 03期
基金
美国国家科学基金会;
关键词
ELECTRON-TRANSFER REACTIONS; NONADIABATIC PROTON; TRANSFER DYNAMICS; PURPLE BACTERIA; TRANSFER RATES; RESONANCE; MOLECULES; FLUORESCENCE; TEMPERATURE; DEPENDENCE;
D O I
10.1063/5.0217546
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the recently discovered proton-coupled energy transfer (PCEnT) mechanism, the transfer of electronic excitation energy between donor and acceptor chromophores is coupled to a proton transfer reaction. Herein, we develop a general theory for PCEnT and derive an analytical expression for the nonadiabatic PCEnT rate constant. This theory treats the transferring hydrogen nucleus quantum mechanically and describes the PCEnT process in terms of nonadiabatic transitions between reactant and product electron-proton vibronic states. The rate constant is expressed as a summation over these vibronic states, and the contribution of each pair of vibronic states depends on the square of the vibronic coupling as well as the spectral convolution integral, which can be viewed as a generalization of the F & ouml;rster-type spectral overlap integral for vibronic rather than electronic states. The convolution integral also accounts for the common vibrational modes shared by the donor and acceptor chromophores for intramolecular PCEnT. We apply this theory to model systems to investigate the key features of PCEnT processes. The excited vibronic states can contribute significantly to the total PCEnT rate constant, and the common modes can either slow down or speed up the process. Because the pairs of vibronic states that contribute the most to the PCEnT rate constant may correspond to spectroscopically dark states, PCEnT could occur even when there is no apparent overlap between the donor emission and acceptor absorption spectra. This theory will assist in the interpretation of experimental data and will guide the design of additional PCEnT systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Proton-coupled electron transfer at SOFC electrodes
    Williams, Nicholas J. J.
    Warburton, Robert E. E.
    Seymour, Ieuan D. D.
    Cohen, Alexander E. E.
    Bazant, Martin Z. Z.
    Skinner, Stephen J. J.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (24):
  • [32] Ultrafast interfacial proton-coupled electron transfer
    Li, B
    Zhao, J
    Onda, K
    Jordan, KD
    Yang, JL
    Petek, H
    SCIENCE, 2006, 311 (5766) : 1436 - 1440
  • [33] Synthetic Applications of Proton-Coupled Electron Transfer
    Gentry, Emily C.
    Knowles, Robert R.
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (08) : 1546 - 1556
  • [34] Proton-coupled electron transfer of cytochrome c
    Murgida, DH
    Hildebrandt, P
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (17) : 4062 - 4068
  • [35] Proton-coupled electron transfer: Proton relays and ultrafast dynamics
    Hammes-Schiffer, Sharon
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [36] Tuning the proton tunneling distance of proton-coupled electron transfer
    Hammarstrom, Leif
    Markle, Todd F.
    Zhang, Ming-Tian
    Glover, Starla
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [37] A theory that connects proton-coupled electron-transfer and hydrogen-atom transfer reactions
    Cukier, RI
    JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (07): : 1746 - 1757
  • [38] The Role of Intermolecular Hydrogen Bonding and Proton Transfer in Proton-Coupled Electron Transfer
    Alligrant, Timothy M.
    Alvarez, Julio C.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (21): : 10797 - 10805
  • [39] Ultrafast proton-coupled electron transfer in heterogeneous photocatalysis
    Zhao, Jin
    Onda, Ken
    Li, Bin
    Petek, Hrvoje
    PHYSICAL CHEMISTRY OF INTERFACES AND NANOMATERIALS V, 2006, 6325
  • [40] Applications of Proton-Coupled Electron Transfer in Organic Synthesis
    Zhou, Zijie
    Kong, Xiangmei
    Liu, Tianfei
    CHINESE JOURNAL OF ORGANIC CHEMISTRY, 2021, 41 (10) : 3844 - 3879