A study on the Detection of Fake news in Spanish

被引:0
|
作者
Galvez, Alba Maribel Sanchez [1 ]
Albores, Francisco Javier [2 ]
Gonzalez, Ricardo Alvarez [1 ]
Conde, Said Gonzalez
Galvez, Sully Sanchez [1 ]
机构
[1] Benemerita Univ Autonoma Puebla, Puebla, Mexico
[2] Univ Autonoma Tlaxcala, Tlaxcala, Mexico
关键词
Fake News; Twitter; Natural Language; Machine Learning; Deep Learning; Transformers;
D O I
10.61467/2007.1558.2024.v15i2.467
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
False information published with the intention of misleading social media users is known as fake news. These are created to appear as credible and genuine information and can manipulate opinions and be disseminated for political or financial purposes (Kaliyar et al., 2021). Fake news is especially propagated on Twitter, today X due to its great capacity for interaction with users, as well as the possibility of retweeting and commenting, which allows for greater dissemination of information. This study proposes a model for detecting fake news in Spanish, which faces challenges such as linguistic diversity and limited resources available for preprocessing. Using a database of approximately 40,000 news extracted from two acquaintances news accounts in Mexico on Twitter, such as "Reforma" and "El Deforma", from 2019 to 2024, a model based on Natural Language Processing, Machine Learning, Deep Learning, and transformer models were developed. This model allows distinguishing whether a headline of a news article in Spanish published on Twitter is true or fake. The algorithms used include Logistic Regression, Na & iuml;ve Bayes, Support Vector Machines, LSTM, Bidirectional LSTM and mBERT and BETO. After comparing their results, the best accuracy of 0.98 was obtained with BETO. Therefore, transformerbased models outperformed the other approaches used in the study in terms of accuracy. This study allowed identifying the words frequently used in the corpus of fake news, concluding that they often use expressions with exaggerated adjectives and words expressing certainty or amazement in a social, political, and entertainment context.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 50 条
  • [21] Fighting the Fake: A Forensic Linguistic Analysis to Fake News Detection
    Rui Sousa-Silva
    International Journal for the Semiotics of Law - Revue internationale de Sémiotique juridique, 2022, 35 : 2409 - 2433
  • [22] Detection of Arabic and Algerian Fake News
    Hamadouche, Khaoula
    Bousmaha, Kheira Zineb
    Amar, Mohamed Yasine Bahi
    Hadrich-Belguith, Lamia
    APPLIED COMPUTER SYSTEMS, 2024, 29 (02) : 14 - 21
  • [23] dEFEND: Explainable Fake News Detection
    Shu, Kai
    Cui, Limeng
    Wang, Suhang
    Lee, Dongwon
    Liu, Huan
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 395 - 405
  • [24] A comprehensive Benchmark for fake news detection
    Galli, Antonio
    Masciari, Elio
    Moscato, Vincenzo
    Sperli, Giancarlo
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2022, 59 (01) : 237 - 261
  • [25] Fake News Detection: An Interdisciplinary Research
    Zhou, Xinyi
    Zafarani, Reza
    COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2019 ), 2019, : 1292 - 1292
  • [26] SCORING MODEL FOR THE DETECTION OF FAKE NEWS
    Pop, Mihai-Ionut
    STUDIA UNIVERSITATIS VASILE GOLDIS ARAD SERIA STIINTE ECONOMICE, 2020, 30 (01) : 91 - 102
  • [27] A Survey on Explainable Fake News Detection
    Mishima, Ken
    Yamana, Hayato
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (07) : 1249 - 1257
  • [28] Fighting the Fake: A Forensic Linguistic Analysis to Fake News Detection
    Sousa-Silva, Rui
    INTERNATIONAL JOURNAL FOR THE SEMIOTICS OF LAW-REVUE INTERNATIONALE DE SEMIOTIQUE JURIDIQUE, 2022, 35 (06): : 2409 - 2433
  • [29] Explore the Style for Fake News Detection
    Wilbert
    Yang, Hui-kuo
    Peng, Wen-chih
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2024, 40 (06) : 1349 - 1361
  • [30] Supervised Learning for Fake News Detection
    Reis, Julio C. S.
    Correia, Andre
    Murai, Fabricio
    Veloso, Adriano
    Benevenuto, Fabricio
    IEEE INTELLIGENT SYSTEMS, 2019, 34 (02) : 76 - 81