Design of a mixed material moderator in a beam-shaping assembly for proton accelerator-based boron neutron capture therapy

被引:0
|
作者
Ge, Yulin [1 ,2 ,3 ]
Zhong, Yao [1 ]
Yuan, Nan [1 ]
Sun, Yanbing [1 ]
Zou, Liping [1 ]
Yang, Zhen [1 ]
Ma, Wei [1 ]
Lu, Liang [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, United Lab Frontier Radiotherapy Technol, Guangzhou, Peoples R China
[3] Chinese Acad Sci Ion Med Technol Co Ltd, Guangzhou, Peoples R China
关键词
BNCT; Beam-shaping assembly; Composite material; Neutron target; Proton accelerator; Accelerator neutron source; BNCT;
D O I
10.1016/j.apradiso.2024.111515
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Boron Neutron Capture Therapy is being promoted with the development of accelerator neutron sources, and many new accelerator-based BNCT facilities are being built. In Particle Accelerator Facility project of Sun Yat-sen University, we plan to build a terminal for BNCT research based on an 8 MeV, CW 3 mA proton accelerator. In this paper, we present a beam-shaping assembly for this proton accelerator with such low 24 kW beam power, using composite moderator materials composed of five elements: Mg, Al, F, O, and Li. The calculation result of FLUKA with ENDF/B and JENDL libraries shows that the epithermal neutron beam flux is 1.57x10(9)n/cm(2)/s with the CW 3 mA proton beam. The fast neutron component and the gamma ray component under free-air condition are 1.49x10(-13)Gy center dot cm(2) and 8.12x10(-14)Gy center dot cm(2) respectively, in line with IAEA-TECDOC-1223 design recommendations. The thermal analysis shows that the maximum temperature of beryllium target is 706.5 K, and the structure materials of BSA do not melt.
引用
收藏
页数:7
相关论文
共 50 条