Chaotic time series prediction based on physics-informed neural operator

被引:1
|
作者
Wang, Qixin [1 ]
Jiang, Lin [1 ]
Yan, Lianshan [1 ]
He, Xingchen [1 ]
Feng, Jiacheng [1 ]
Pan, Wei [1 ]
Luo, Bin [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 611756, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaos prediction; Time series prediction; Neural operator; Deep learning; Physics-informed; NETWORKS; SYSTEMS; GBIT/S; MODEL;
D O I
10.1016/j.chaos.2024.115326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the prediction of chaotic time series using physics-informed neural operator (PINO) with different driven methods, such as data-driven method, physics-driven method, and hybrid data-physics- driven method. Here, the chaotic time series are generated from two classical time delayed chaotic systems, including Mackey-Glass equation (MG) and Optoelectronic Oscillator (OEO). The simulation results from these two chaotic systems or experimental results from Optoelectronic Oscillator demonstrate that when there is enough data with good quality, it is possible to train the model solely using data-driven method. Conversely, when possessing complete mastery of the physical prior knowledge, it is also available to train the model solely using physics-driven method, indicating there is no need to prepare label datasets as in data-driven method. However, when dataset quality is poor, for example, contaminated by noise, and precise physical prior knowledge is not fully acquired, the hybrid method will have a better performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] A Physics-Informed Neural Network for the Prediction of Unmanned Surface Vehicle Dynamics
    Xu, Peng-Fei
    Han, Chen-Bo
    Cheng, Hong-Xia
    Cheng, Chen
    Ge, Tong
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (02)
  • [23] Physics-informed generative neural network: an application to troposphere temperature prediction
    Chen, Zhihao
    Gao, Jie
    Wang, Weikai
    Yan, Zheng
    ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (06)
  • [24] Physics-Informed Neural Networks for prediction of transformer's temperature distribution
    Odeback, Oliver Welin
    Bragone, Federica
    Laneryd, Tor
    Luvisotto, Michele
    Morozovska, Kateryna
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1579 - 1586
  • [25] Prediction of microstructural evolution of multicomponent polymers by Physics-Informed neural networks
    An, Jiaqi
    Ran, Yanlong
    Lin, Jiaping
    Zhang, Liangshun
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 246
  • [26] Physics-informed neural network for velocity prediction in electromagnetic launching manufacturing
    Sun, Hao
    Liao, Yuxuan
    Jiang, Hao
    Li, Guangyao
    Cui, Junjia
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 220
  • [27] Physics-informed deep operator networks with stiffness-based loss functions for structural response prediction
    Ahmed, Bilal
    Qiu, Yuqing
    Abueidda, Diab W.
    El-Sekelly, Waleed
    de Soto, Borja Garcia
    Abdoun, Tarek
    Mobasher, Mostafa E.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 144
  • [28] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [29] State prediction for multiple diffusion targets based on point pattern physics-informed neural network
    Sun, Qiankun
    Cai, Lei
    Qin, Xiaochen
    NEUROCOMPUTING, 2025, 633
  • [30] Prediction of chaotic time series based on wavelet neural network
    Gao, L
    Lu, L
    Li, Z
    OCEANS 2001 MTS/IEEE: AN OCEAN ODYSSEY, VOLS 1-4, CONFERENCE PROCEEDINGS, 2001, : 2046 - 2050