Elucidating the effects of metal transfer modes and investigating the material properties in wire-arc additive manufacturing (WAAM)

被引:0
|
作者
Iqbal, Hambal [1 ]
Ascari, Alessandro [1 ]
Fortunato, Alessandro [1 ]
Liverani, Erica [1 ]
机构
[1] Univ Bologna, Dept Ind Engn, Viale Risorgimento 2, I-40136 Bologna, Italy
关键词
Metal transfer modes; Additive manufacturing; Arc welding; 3D printing; Wire arc additive manufacturing; MECHANICAL-PROPERTIES; PROCESS PARAMETERS; OVERLAPPING MODEL; MICROSTRUCTURE; COMPONENTS; DEPOSITION;
D O I
10.1007/s40964-024-00808-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Studies have shown the influence of WAAM process parameters on mechanical properties, bead formation, dimensional accuracy, and microstructure. However, metal transfer modes and their interactions with input variables have not been investigated thoroughly. Therefore, short/spray, pulse and double pulse modes were investigated in this study at different current levels. Bead-on-plate trials were conducted by depositing ER70S-6 wire to investigate bead morphology, dilution, microstructure, and hardness. The study was supported by a detailed statistical approach, including analysis of variance (ANOVA) and regression analysis. Similarly, the combined effects of hatch distance and current were studied on bead formation in multi-layer deposits. Moreover, a thin wall and a cubic structure were deposited to realize the WAAM capability for larger depositions. The microstructures of thin wall and cubic structure were analyzed using optical microscopy (OM) and scanning electron microscopy (SEM). The study concludes that metal transfer modes at various currents significantly influence bead geometry, microstructure and hardness. The microstructure of bead-on-plate trials show fine lamellar structure at low current in all modes. Higher current results in coarse grains with a polygonal and columnar morphology. The hardness shows a decreasing trend as the current increases. The combined effects of current and hatch distance alter bead morphology; however, an optimized combination yields smoother surfaces. The microstructure of thin wall showed a slight anisotropy along the building direction. The presence of small pores was witnessed from OM and SEM images. Similarly, the cubic structure showed a more homogeneous microstructure with much lower porosity. The hardness profile of the thin wall exhibited small fluctuations along the building direction, while that of the cubic structure was more uniform.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] The Current State of Research of Wire Arc Additive Manufacturing (WAAM): A Review
    Treutler, Kai
    Wesling, Volker
    APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [42] Deep learning for anomaly detection in wire-arc additive manufacturing
    Chandra, Mukesh
    Kumar, Abhinav
    Sharma, Sumit Kumar
    Kazmi, Kashif Hasan
    Rajak, Sonu
    WELDING INTERNATIONAL, 2023, 37 (08) : 457 - 467
  • [43] Correlations between Microstructure Characteristics and Mechanical Properties in 5183 Aluminium Alloy Fabricated by Wire-Arc Additive Manufacturing with Different Arc Modes
    Fang, Xuewei
    Zhang, Lijuan
    Chen, Guopeng
    Dang, Xiaofeng
    Huang, Ke
    Wang, Lei
    Lu, Bingheng
    MATERIALS, 2018, 11 (11)
  • [44] Vision based process monitoring in wire arc additive manufacturing (WAAM)
    Franke, Jan
    Heinrich, Florian
    Reisch, Raven T.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025, 36 (03) : 1711 - 1721
  • [45] Challenges associated with the wire arc additive manufacturing (WAAM) of aluminum alloys
    Thapliyal, Shivraman
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)
  • [46] Ultracold-Wire and arc additive manufacturing (UC-WAAM)
    Rodrigues, Tiago A.
    Duarte, Valdemar R.
    Miranda, R. M.
    Santos, Telmo G.
    Oliveira, J. P.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2021, 296 (296)
  • [47] Wire arc additive manufacturing (WAAM) of nanotreated aluminum alloy 6061
    Chi, Yitian
    Murali, Narayanan
    Liu, Jingke
    Liese, Maximilian
    Li, Xiaochun
    RAPID PROTOTYPING JOURNAL, 2023, 29 (07) : 1341 - 1349
  • [48] Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)
    Cam, Gurel
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 77 - 85
  • [49] Wire Arc Additive Manufacturing (WAAM) and microstructural analysis of Magnesium parts
    University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels
    4600, Austria
    不详
    61669, Czech Republic
    不详
    5282, Austria
    eJ. Nondestruct. Test., 2023, 3
  • [50] Processing of a Martensitic Tool Steel by Wire-Arc Additive Manufacturing
    Ziesing, Ulf
    Lentz, Jonathan
    Roettger, Arne
    Theisen, Werner
    Weber, Sebastian
    MATERIALS, 2022, 15 (21)