Brain-Inspired Physics-Informed Neural Networks: Bare-Minimum Neural Architectures for PDE Solvers

被引:0
|
作者
Markidis, Stefano [1 ]
机构
[1] KTH Royal Inst Technol, Stockholm, Sweden
来源
关键词
Brain-Inspired PINN; Bare-Minimum PINN Architectures; Spectral Bias Phenomenon; Modular PINN; ALGORITHM;
D O I
10.1007/978-3-031-63749-0_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physics-Informed Neural Networks (PINNs) have emerged as a powerful tool for solving partial differential equations (PDEs) in various scientific and engineering domains. However, traditional PINN architectures typically rely on large, fully connected multilayer perceptrons (MLPs), lacking the sparsity and modularity inherent in many traditional numerical solvers. An unsolved and critical question for PINN is: What is the minimum PINN complexity regarding nodes, layers, and connections needed to provide acceptable performance? To address this question, this study investigates a novel approach by merging established PINN methodologies with brain-inspired neural network techniques. We use Brain-Inspired Modular Training (BIMT), leveraging concepts such as locality, sparsity, and modularity inspired by the organization of the brain. With brain-inspired PINN, we demonstrate the evolution of PINN architectures from large, fully connected structures to bare-minimum, compact MLP architectures, often consisting of a few neural units! Moreover, using brain-inspired PINN, we showcase the spectral bias phenomenon occurring on the PINN architectures: bare-minimum architectures solving problems with high-frequency components require more neural units than PINN solving low-frequency problems. Finally, we derive basic PINN building blocks through BIMT training on simple problems akin to convolutional and attention modules in deep neural networks, enabling the construction of modular PINN architectures. Our experiments show that brain-inspired PINN training leads to PINN architectures that minimize the computing and memory resources yet provide accurate results.
引用
收藏
页码:331 / 345
页数:15
相关论文
共 50 条
  • [31] Tackling the curse of dimensionality with physics-informed neural networks
    Hu, Zheyuan
    Shukla, Khemraj
    Karniadakis, George Em
    Kawaguchi, Kenji
    NEURAL NETWORKS, 2024, 176
  • [32] Boussinesq equation solved by the physics-informed neural networks
    Ruozhou Gao
    Wei Hu
    Jinxi Fei
    Hongyu Wu
    Nonlinear Dynamics, 2023, 111 : 15279 - 15291
  • [33] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [34] The application of physics-informed neural networks to hydrodynamic voltammetry
    Chen, Haotian
    Kaetelhoen, Enno
    Compton, Richard G.
    ANALYST, 2022, 147 (09) : 1881 - 1891
  • [35] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [36] Physics-Informed Neural Networks for Cardiac Activation Mapping
    Costabal, Francisco Sahli
    Yang, Yibo
    Perdikaris, Paris
    Hurtado, Daniel E.
    Kuhl, Ellen
    FRONTIERS IN PHYSICS, 2020, 8
  • [37] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,
  • [38] Physics-Informed Neural Networks with Group Contribution Methods
    Babaei, Mohammad Reza
    Stone, Ryan
    Knotts, Thomas Allen
    Hedengren, John
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (13) : 4163 - 4171
  • [39] Adversarial uncertainty quantification in physics-informed neural networks
    Yang, Yibo
    Perdikaris, Paris
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 136 - 152
  • [40] Multifidelity modeling for Physics-Informed Neural Networks (PINNs)
    Penwarden, Michael
    Zhe, Shandian
    Narayan, Akil
    Kirby, Robert M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451