A Machine-Learning Approach on Metabolomic Data to Predict Type 2 Diabetes Mellitus Incidence

被引:0
|
作者
Leiherer, Andreas
Muendlein, Axel
Saely, Christoph H.
Plattner, Thomas
Larcher, Barbara
Mader, Arthur
Vonbank, Alexander
Laaksonen, Reijo
Fraunberger, Peter
Drexel, Heinz
机构
关键词
D O I
10.2337/db24-1321-P
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
1321-P
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Machine-learning applied to digital retinal images to predict diabetes and hypertension
    Parker, V. E. R.
    Selvarajah, V.
    Svangard, N.
    White, T.
    Wolfhagen-Sand, F.
    Hegelund-Myrback, T.
    Majdanska-Strzalka, M.
    Kaszubska, K.
    Esterline, R.
    DIABETOLOGIA, 2023, 66 (SUPPL 1) : S432 - S433
  • [22] Integrating metabolomic data with machine learning approach for discovery of Q-markers from Jinqi Jiangtang preparation against type 2 diabetes
    Lele Yang
    Yan Xue
    Jinchao Wei
    Qi Dai
    Peng Li
    Chinese Medicine, 16
  • [23] Prediction of Diabetes Mellitus Type-2 Using Machine Learning
    Apoorva, S.
    Aditya, K. S.
    Snigdha, P.
    Darshini, P.
    Sanjay, H. A.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 364 - 370
  • [24] Integrating metabolomic data with machine learning approach for discovery of Q-markers from Jinqi Jiangtang preparation against type 2 diabetes
    Yang, Lele
    Xue, Yan
    Wei, Jinchao
    Dai, Qi
    Li, Peng
    CHINESE MEDICINE, 2021, 16 (01)
  • [25] Machine-Learning Approach to Analysis of Driving Simulation Data
    Yoshizawa, Akira
    Nishiyama, Hiroyuki
    Iwasaki, Hirotoshi
    Mizoguchi, Fumio
    2016 IEEE 15TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2016, : 398 - 402
  • [26] Body fat predicts exercise capacity in persons with Type 2 Diabetes Mellitus: A machine learning approach
    Nath, Tanmay
    Ahima, Rexford S.
    Santhanam, Prasanna
    PLOS ONE, 2021, 16 (03):
  • [27] Understanding Type 2 Diabetes Mellitus Risk Parameters through Intermittent Fasting: A Machine Learning Approach
    Shazman, Shula
    NUTRIENTS, 2023, 15 (18)
  • [28] Integrated Datasets of Proteomic and Metabolomic Biomarkers to Predict Its Impacts on Comorbidities of Type 2 Diabetes Mellitus
    Cheema, Amrita K.
    Kaur, Prabhjit
    Fadel, Amena
    Younes, Noura
    Zirie, Mahmoud
    Rizk, Nasser M.
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2020, 13 : 2409 - 2431
  • [29] Using electronic health records to develop and validate a machine-learning tool to predict type 2 diabetes outcomes: a study protocol
    Neves, Ana Luisa
    Rodrigues, Pedro Pereira
    Mulla, Abdulrahim
    Glampson, Ben
    Willis, Tony
    Darzi, Ara
    Mayer, Erik
    BMJ OPEN, 2021, 11 (07):
  • [30] Machine-learning approach to predict work hardening behavior of pearlitic steel
    Qiao, Ling
    Liu, Yong
    Zhu, Jingchuan
    Wang, Zibo
    MATERIALS LETTERS, 2021, 289