Automated writing evaluation (AWE) systems automatically assess and provide students with feedback on their writing. Despite learning benefits, students may not effectively interpret and utilize AI-generated feedback, thereby not maximizing their learning outcomes. A closely related issue is the accuracy of the systems, that students may not understand, are not perfect. Our study investigates whether students differentially addressed false positive and false negative AI-generated feedback errors on their science essays. We found that students addressed nearly all the false negative feedback; however, they addressed less than one-fourth of the false positive feedback. The odds of addressing a false positive feedback was 99% lower than addressing a false negative feedback, representing significant missed opportunities for revision and learning. We discuss the implications of these findings in the context of students' learning.
机构:
Massachusetts Gen Hosp, Analyt & Translat Genet Unit, Boston, MA 02114 USAMassachusetts Gen Hosp, Analyt & Translat Genet Unit, Boston, MA 02114 USA