Optimizing pervious concrete with machine learning: Predicting permeability and compressive strength using artificial neural networks

被引:4
|
作者
Wu, Yinglong [1 ]
Pieralisi, R. [2 ]
Sandoval, F. Gersson B. [3 ]
Lopez-Carreno, R. D. [1 ,4 ]
Pujadas, P. [1 ,4 ]
机构
[1] Univ Politecn Catalunya BarcelonaTech UPC, Dept Project & Construct Engn, Ave Diagonal 647, Barcelona 08028, Spain
[2] Fed Univ Parana UFPR, Civil Engn Studies Ctr CESEC, Postgrad Program Civil Engn PPGEC, Curitiba, PR, Brazil
[3] Univ Catolica Norte, Dept Gest Construcc, Angamos 0610, Antofagasta, Chile
[4] Grp Construct Res & Innovat GRIC, C Colom 11,Ed TR5, Barcelona 08222, Spain
关键词
Artificial neural network; Pervious concrete; Permeability; Compressive strength; OF-THE-ART; SUSTAINABLE PAVEMENT MATERIAL; MECHANICAL-PROPERTIES; COMPACTION; CYLINDERS;
D O I
10.1016/j.conbuildmat.2024.137619
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study makes a significant contribution to the field of pervious concrete by using machine learning to innovatively predict both mechanical and hydraulic performance. Unlike existing methods that rely on laborintensive trial-and-error experiments, our proposed approach leverages a multilayer perceptron network. To develop this approach, we compiled a comprehensive dataset comprising 271 sets and 3,252 experimental data points. Our methodology involved evaluating 22,246 network configurations, employing Monte Carlo crossvalidation over 20 iterations, and using 4 training algorithms, resulting in a total of 1,779,680 training iterations. This results in an optimized model that integrates diverse mix design parameters, enabling accurate predictions of permeability and compressive strength even in the absence of experimental data, achieving R2 values of 0.97 and 0.98, respectively. Sensitivity analyses validate the model's alignment with established principles of pervious concrete behavior. By demonstrating the efficacy of machine learning as a complementary tool for optimizing pervious concrete mix designs, this research not only addresses current methodological limitations but also lays the groundwork for more efficient and effective approaches in the field.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
    Song, Hongwei
    Ahmad, Ayaz
    Farooq, Furqan
    Ostrowski, Krzysztof Adam
    Maslak, Mariusz
    Czarnecki, Slawomir
    Aslam, Fahid
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 308
  • [32] Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks
    Asteris, Panagiotis G.
    Armaghani, Danial J.
    Hatzigeorgiou, George D.
    Karayannis, Chris G.
    Pilakoutas, Kypros
    COMPUTERS AND CONCRETE, 2019, 24 (05): : 469 - 488
  • [33] Predicting the shear strength of reinforced concrete beams using artificial neural networks
    Mansour, MY
    Dicleli, M
    Lee, JY
    Zhang, J
    ENGINEERING STRUCTURES, 2004, 26 (06) : 781 - 799
  • [34] Recycled Aggregates Concrete Compressive Strength Prediction Using Artificial Neural Networks (ANNs)
    B K A, Mohamad Ali Ridho
    Ngamkhanong, Chayut
    Wu, Yubin
    Kaewunruen, Sakdirat
    INFRASTRUCTURES, 2021, 6 (02) : 1 - 20
  • [35] Prediction model for compressive strength of basic concrete mixture using artificial neural networks
    Srđan Kostić
    Dejan Vasović
    Neural Computing and Applications, 2015, 26 : 1005 - 1024
  • [36] Prediction model for compressive strength of basic concrete mixture using artificial neural networks
    Kostic, Srdan
    Vasovic, Dejan
    NEURAL COMPUTING & APPLICATIONS, 2015, 26 (05): : 1005 - 1024
  • [37] Prediction of compressive strength of concrete using neural networks
    Al-Salloum, Yousef A.
    Shah, Abid A.
    Abbas, H.
    Alsayed, Saleh H.
    Almusallam, Tarek H.
    Al-Haddad, M. S.
    COMPUTERS AND CONCRETE, 2012, 10 (02): : 197 - 217
  • [38] Prediction of FRP-confined compressive strength of concrete using artificial neural networks
    Naderpour, H.
    Kheyroddin, A.
    Amiri, G. Ghodrati
    COMPOSITE STRUCTURES, 2010, 92 (12) : 2817 - 2829
  • [39] Prediction of permeability and unconfined compressive strength of pervious concrete using evolved support vector regression
    Sun, Junbo
    Zhang, Junfei
    Gu, Yunfan
    Huang, Yimiao
    Sun, Yuantian
    Ma, Guowei
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 207 : 440 - 449
  • [40] Predicting compressive strength of green concrete using hybrid artificial neural network with genetic algorithm
    Pan, Lei
    Wang, Yuanfeng
    Li, Kai
    Guo, Xiaohui
    STRUCTURAL CONCRETE, 2023, 24 (02) : 1980 - 1996