Numerical study of the interaction between cylindrical particles and shear-thinning fluids in a linear shear flow

被引:2
|
作者
Ji, Jingbo [1 ,2 ]
Zhang, Hao [1 ,2 ]
An, Xizhong [1 ]
Yang, Dongmin [3 ]
机构
[1] Northeastern Univ, Sch Met, Key Lab Ecol Met Multimet Mineral, Minist Educ, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Engn Res Ctr Frontier Technol Low carbon Steelmaki, Minist Educ, Shenyang 110819, Peoples R China
[3] Univ Edinburgh, Inst Mat & Proc, Sch Engn, Edinburgh EH9 3FB, Scotland
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
FUSED FILAMENT FABRICATION; NONSPHERICAL PARTICLES; HEAT-TRANSFER; LIFT FORCES; DRAG; TORQUE; WAKE; COEFFICIENTS; TRANSITION; SIMULATION;
D O I
10.1063/5.0223428
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the interaction between cylindrical particles and shear-thinning non-Newtonian fluids in a linear shear flow is investigated using particle-resolved direct numerical simulation. The Carreau model is used to represent the rheological properties of shear-thinning fluids, and the numerical method is validated against previously published data. Then, the effects of Reynolds number (Re), aspect ratio (Ar), power-law index (n), Carreau number (Cu), and incident angle (alpha) on drag coefficient (C-D), lift coefficient (C-L), and torque coefficient (C-T) of cylindrical particles are investigated. The numerical results show that the flow field structure and pressure distribution around the cylindrical particle in a shear flow are different from those in a uniform flow, and the particles in a shear flow generate extra C-L and C-T. Furthermore, comparing with Newtonian fluids, the shear-thinning properties of the non-Newtonian fluid change the viscosity distribution and significantly decrease the C-D, C-L, and C-T of the particles. The variation laws and influencing mechanisms of C-D, C-L, and C-T under different working conditions are discussed by dividing the total coefficients into pressure and viscous shear contributions. Predictive correlations of C-D, C-L, and C-T are established by considering the effects of Re, Ar, n, Cu, and alpha. The findings indicate that both the shear flow mode and shear-thinning properties must be considered when evaluating relevant particle-fluid interactions, which provides important guidance for predicting and controlling the orientation and distribution of cylindrical particles in shear-thinning fluids. Meanwhile, the predictive correlations can be used for large-scale simulations of multiphase coupling.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Taylor-vortex flow in shear-thinning fluids
    Topayev, S.
    Nouar, C.
    Bernardin, D.
    Neveu, A.
    Bahrani, S. A.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [22] Analysis of Interaction and Flow Pattern of Multiple Bubbles in Shear-Thinning Viscoelastic Fluids
    He, Hongbin
    Liu, Zhuang
    Ji, Jingbo
    Li, Shaobai
    ENERGIES, 2023, 16 (14)
  • [23] Helical propulsion in shear-thinning fluids
    Gomez, Saul
    Godinez, Francisco A.
    Lauga, Eric
    Zenit, Roberto
    JOURNAL OF FLUID MECHANICS, 2017, 812 : R3
  • [24] Jeffery orbits in shear-thinning fluids
    Abtahi, S. Arman
    Elfring, Gwynn J.
    PHYSICS OF FLUIDS, 2019, 31 (10)
  • [25] Hydrodynamic interaction between a pair of bubbles ascending in shear-thinning inelastic fluids
    Rodrigo Velez-Cordero, J.
    Samano, Diego
    Yue, Pengtao
    Feng, James J.
    Zenit, Roberto
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2011, 166 (1-2) : 118 - 132
  • [26] Squirming through shear-thinning fluids
    Datt, Charu
    Zhu, Lailai
    Elfring, Gwynn J.
    Pak, On Shun
    JOURNAL OF FLUID MECHANICS, 2015, 784 : R1
  • [27] CHAOTIC MIXING OF SHEAR-THINNING FLUIDS
    NIEDERKORN, TC
    OTTINO, JM
    AICHE JOURNAL, 1994, 40 (11) : 1782 - 1793
  • [28] Sedimentation of suspensions in shear-thinning fluids
    Daugan, S
    Talini, L
    Herzhaft, B
    Peysson, Y
    Allain, C
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2004, 59 (01): : 71 - 80
  • [29] The Dean instability for shear-thinning fluids
    Haines, Philip E.
    Denier, James P.
    Bassom, Andrew P.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2013, 198 : 125 - 135
  • [30] Rapid wetting of shear-thinning fluids
    Yada, Susumu
    Bazesefidpar, Kazem
    Tammisola, Outi
    Amberg, Gustav
    Bagheri, Shervin
    PHYSICAL REVIEW FLUIDS, 2023, 8 (04)