Spectral Galerkin Methods for Riesz Space-Fractional Convection-Diffusion Equations

被引:1
|
作者
Zhang, Xinxia [1 ]
Wang, Jihan [1 ]
Wu, Zhongshu [1 ]
Tang, Zheyi [1 ]
Zeng, Xiaoyan [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Riesz fractional derivatives; fractional convection-diffusion equation; spectral Galerkin method; DISTRIBUTED-ORDER; FUNDAMENTAL SOLUTION; ANOMALOUS DIFFUSION; RANDOM-WALK; CALCULUS; APPROXIMATION;
D O I
10.3390/fractalfract8070431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper applies the spectral Galerkin method to numerically solve Riesz space-fractional convection-diffusion equations. Firstly, spectral Galerkin algorithms were developed for one-dimensional Riesz space-fractional convection-diffusion equations. The equations were solved by discretizing in space using the Galerkin-Legendre spectral approaches and in time using the Crank-Nicolson Leap-Frog (CNLF) scheme. In addition, the stability and convergence of semi-discrete and fully discrete schemes were analyzed. Secondly, we established a fully discrete form for the two-dimensional case with an additional complementary term on the left and then obtained the stability and convergence results for it. Finally, numerical simulations were performed, and the results demonstrate the effectiveness of our numerical methods.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] SPECTRAL ANALYSIS AND MULTIGRID METHODS FOR FINITE VOLUME APPROXIMATIONS OF SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Donatelli, Marco
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : A4007 - A4039
  • [22] A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations
    Huang, Xin
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Zhang, Chun-Hua
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3081 - 3096
  • [23] A SURVEY ON NUMERICAL METHODS FOR SPECTRAL SPACE-FRACTIONAL DIFFUSION PROBLEMS
    Harizanov, Stanislav
    Lazarov, Raytcho
    Margenov, Svetozar
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (06) : 1605 - 1646
  • [24] Numerical Solutions of Convection-Diffusion Equations by Hybrid Discontinuous Galerkin Methods
    Zhu, Y.
    Wan, D.
    SIXTH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS (ICNM-VI), 2013, : 265 - 272
  • [25] DISCONTINUOUS GALERKIN METHODS FOR CONVECTION-DIFFUSION EQUATIONS FOR VARYING AND VANISHING DIFFUSIVITY
    Proft, J.
    Rivere, B.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2009, 6 (04) : 533 - 561
  • [26] A PETROV-GALERKIN FINITE ELEMENT METHOD FOR FRACTIONAL CONVECTION-DIFFUSION EQUATIONS
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) : 481 - 503
  • [27] A Survey on Numerical Methods for Spectral Space-Fractional Diffusion Problems
    Stanislav Harizanov
    Raytcho Lazarov
    Svetozar Margenov
    Fractional Calculus and Applied Analysis, 2020, 23 : 1605 - 1646
  • [28] FAST FINITE VOLUME METHODS FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Wang, Hong
    Cheng, Aijie
    Wang, Kaixin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (05): : 1427 - 1441
  • [29] Numerical simulation for nonlinear space-fractional reaction convection-diffusion equation with its application
    Anley, Eyaya Fekadie
    Basha, Merfat
    Hussain, Arafat
    Dai, Binxiang
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 65 : 245 - 261
  • [30] A fast second-order scheme for nonlinear Riesz space-fractional diffusion equations
    Chun-Hua Zhang
    Jian-Wei Yu
    Xiang Wang
    Numerical Algorithms, 2023, 92 : 1813 - 1836