The existence of the Gorenstein projective precovers over arbitrary rings is an open question. It is known that if the ring has finite Gorenstein global dimension, then every module has a Gorenstein projective precover. We prove here a "reduction" property - we show that, over any ring, it suffices to consider finitely presented modules: if there exists a nonnegative integer n such that every finitely presented module has Gorenstein projective dimension <= n, then the class of Gorenstein projective modules is special precovering.
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
Li, Zhi-Wei
Zhang, Xiaojin
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China