Numerical Simulation of the Laser Welding Process for Diamond Saw Blades

被引:0
|
作者
Xu, Qiang [1 ,2 ]
Cao, Xiaodie [3 ]
Liu, Yibo [1 ,2 ]
Xu, Yanjun [1 ,2 ]
Wu, Jiajun [3 ]
机构
[1] Cent Iron & Res Inst, Beijing 100081, Peoples R China
[2] Beijing Gang Yan Diamond Prod Co, Beijing 102200, Peoples R China
[3] Shantou Univ, Coll Engn, Shantou 515063, Peoples R China
关键词
diamond tools; laser welding; temperature field; stress field; grain morphology; fatigue performance; RESIDUAL-STRESS; MECHANICAL-PROPERTIES; RESULT QUALITY; TEMPERATURE; MICROSTRUCTURE; BEHAVIOR; STEEL;
D O I
10.3390/photonics11070676
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The development and application of laser welding transition layer technology is pivotal for manufacturing high-performance diamond saw blades. Despite its importance, there is a need for more precise modeling to optimize welding parameters and enhance blade performance. This study employs SYSWELD software to simulate the laser welding process, demonstrating high accuracy in predicting the molten pool shape. A cross-scale multi-field coupling model was established using the finite element method, incorporating temperature field, phase transformation, grain morphology, stress field, and fatigue performance. A comprehensive life cycle assessment identified optimal welding parameters. The results indicate that a laser welding speed of 26 mm/s and a power of 1700 W minimize weld stress, reduce the digital volume correlation (DVC) value, and enhance fatigue resistance. Additionally, welding tests confirmed that using 1700 W produced the highest tooth strength of 1200 MPa, validating the simulation results. This study addresses existing gaps in modeling accuracy and parameter optimization, offering a robust framework for improving the performance and reliability of laser-welded diamond saw blades.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Numerical simulation of laser full penetration welding
    Kazemi, Komeil
    Goldak, John A.
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 44 (03) : 841 - 849
  • [32] Numerical simulation of friction stir welding process
    Dongun Kim
    Harsha Badarinarayan
    Ill Ryu
    Ji Hoon Kim
    Chongmin Kim
    Kazutaka Okamoto
    R. H. Wagoner
    Kwansoo Chung
    International Journal of Material Forming, 2009, 2
  • [33] Numerical simulation of underwater explosive welding process
    Sun Wei
    Li Xiaojie
    Hokamoto, Kazuyuki
    EXPLOSION, SHOCK WAVE AND HIGH-ENERGY REACTION PHENOMENA II, 2014, 767 : 120 - +
  • [34] NUMERICAL SIMULATION OF FRICTION STIR WELDING PROCESS
    Kim, Dongun
    Badarinarayan, Harsha
    Ryu, Ill
    Kim, Ji Hoon
    Kim, Chongmin
    Okamoto, Kazutaka
    Wagoner, R. H.
    Chung, Kwansoo
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2009, 2 : 383 - 386
  • [35] Selected problem of numerical simulation of welding process
    Kokot, G.
    John, A.
    MECHANIKA 2008, PROCEEDINGS, 2008, : 272 - 277
  • [36] Numerical simulation of resistance spot welding process
    Khan, JA
    Xu, LJ
    Chao, YJ
    Broach, K
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2000, 37 (05) : 425 - 446
  • [37] Numerical simulation of the electron beam welding process
    Lacki, Piotr
    Adamus, Konrad
    COMPUTERS & STRUCTURES, 2011, 89 (11-12) : 977 - 985
  • [38] Computer simulation of stone frame sawing process using diamond blades
    Wang, CY
    Clausen, R
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2003, 43 (06): : 559 - 572
  • [39] Numerical simulation of molecular motion around laser microengine blades
    Ota, M
    Nakao, T
    Sakamoto, M
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 55 (1-3) : 223 - 230
  • [40] Numerical simulation of welding deformation in laser hybrid welding based on SYSWELD
    Tang Q.
    Chen P.
    Chen J.
    Liang Y.
    Liu Z.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2019, 40 (03): : 32 - 36