Cobalt Substitution on SnS-rGO Composites for Efficient Oxygen and Hydrogen Evolution Reactions

被引:1
|
作者
Kumar, Chandan [1 ,2 ]
Saharan, Pinky [1 ,2 ]
Singh, Thangjam Ibomcha [4 ]
Gupta, Ashish [3 ]
Singh, Jogender [5 ]
Singh, Mandeep [1 ]
Dhakate, S. R. [1 ,2 ]
机构
[1] CSIR Natl Phys Lab CSIR NPL, Adv Carbon Prod & Metrol Dept, New Delhi 110012, India
[2] Acad Sci & Innovat Res, Ghaziabad 201002, India
[3] Natl Inst Technol Kurukshetra, Dept Phys, Kurukshetra 136119, Haryana, India
[4] Manipur Univ Canchipur, Dept Anthropol, Imphal 795003, Manipur, India
[5] CSIR Indian Inst Petr, Light Stock Proc Div, Mohkampur 248005, Dehradun, India
关键词
METAL DICHALCOGENIDES; HIGH-PERFORMANCE; FACILE SYNTHESIS; GRAPHENE OXIDE; WATER; SULFIDE; ELECTROCATALYST; CARBON; TRANSITION; DEPOSITION;
D O I
10.1021/acs.energyfuels.4c02676
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To overcome the high cost of established electrocatalysts (viz., Pt/C and RuO2), there is a pressing need to replace them with highly efficient, cost-effective, and sustainable electrocatalysts. In this study, a series of Co-substituted orthorhombic tin sulfide-reduced graphene oxide (SnS-rGO) [CTSx-rGO, (x: 0.1 to 0.3)] catalysts were produced via a one-pot hydrothermal process. In potassium hydroxide (1.0 mol/L), CTSx-rGO acts as a highly competent and stable catalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) owing to the cumulative effect of Co and SnS-rGO composites. Co substitution improves the electrochemical active surface area (ECSA), reduces the R-ct (charge-transfer resistance), and tunes the electronic configuration. The resulting CTS0.2-rGO composite exhibited exceptional performance toward the OER and HER activities by offering relatively small overpotentials of 323.0 and 233.1 mV at 20 mA/cm(2), respectively, with long-term stability up to 50 h and high ECSA that is attributable to the improvement of the specific surface area and ample active sites resulting from the in situ structural and morphology change in SnS-rGO with Co substitution. This work facilitates and strengthens the development of an efficient Co-substituted SnS-rGO-based heterostructure electrocatalyst for overall water splitting.
引用
收藏
页码:16861 / 16872
页数:12
相关论文
共 50 条
  • [31] Pd Nanoparticle Assemblies as Efficient Catalysts for the Hydrogen Evolution and Oxygen Reduction Reactions
    Liu, Suli
    Mu, Xueqin
    Duan, Huiyu
    Chen, Changyun
    Zhang, Hui
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2017, (03) : 535 - 539
  • [32] Carbon supported nickel phosphide as efficient electrocatalyst for hydrogen and oxygen evolution reactions
    Kumar, Premnath
    Murthy, Arun Prasad
    Bezerra, Leticia S.
    Martini, Bibiana K.
    Maia, Gilberto
    Madhavan, Jagannathan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (01) : 622 - 632
  • [33] Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reactions
    Yan, Jiajie
    Lu, Hengyi
    Huang, Yunpeng
    Fu, Jun
    Mo, Shuyi
    Wei, Chun
    Miao, Yue-E
    Liu, Tianxi
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (46) : 23299 - 23306
  • [34] Sulfur–nitrogen co-doped graphene supported cobalt–nickel sulfide rGO@SN-CoNi2S4 as highly efficient bifunctional catalysts for hydrogen/oxygen evolution reactions
    Bing-Lu Deng
    Li-Ping Guo
    Yuan Lu
    Hai-Bo Rong
    Dong-Chu Cheng
    Rare Metals, 2022, 41 (03) : 911 - 920
  • [35] Sulfur–nitrogen co-doped graphene supported cobalt–nickel sulfide rGO@SN-CoNi2S4 as highly efficient bifunctional catalysts for hydrogen/oxygen evolution reactions
    Bing-Lu Deng
    Li-Ping Guo
    Yuan Lu
    Hai-Bo Rong
    Dong-Chu Cheng
    Rare Metals, 2022, 41 : 911 - 920
  • [36] Enhanced Electrocatalytic Performance of P-Doped MoS2/rGO Composites for Hydrogen Evolution Reactions
    Zhu, Wenjun
    Zhang, Bofeng
    Yang, Yao
    Zhao, Minghai
    Fang, Yuwen
    Cui, Yang
    Tian, Jian
    MOLECULES, 2025, 30 (06):
  • [37] Cobalt phosphide nanoparticles embedded in 3D N-doped porous carbon for efficient hydrogen and oxygen evolution reactions
    Yang, Saisai
    Xie, Meng
    Chen, Linlin
    Wei, Wei
    Lv, Xiaomeng
    Xu, Yuanguo
    Ullah, Nabi
    Judith, Oluigbo Chidinma
    Adegbemiga, Yusuf Bashir
    Xie, Jimin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (10) : 4543 - 4552
  • [38] In situ synthesis of covalent cobalt porphyrin framework/CNTs composites for efficient oxygen evolution reaction
    Yang, Qipeng
    Fan, Yiqing
    Zhou, Hao
    Zhang, He
    Tan, Weiqiang
    IONICS, 2024, 30 (08) : 4749 - 4759
  • [39] Insights into mechanisms on electrochemical oxygen evolution substitution reactions
    Liao, Wanyi
    Zhao, Qin
    Wang, Shanshan
    Ran, Yiling
    Su, Hong
    Gan, Rong
    Lu, Shun
    Zhang, Yan
    JOURNAL OF CATALYSIS, 2023, 428
  • [40] Aminophenyl-substituted cobalt(iii) corrole: a bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions
    Kumar, Amit
    Sujesh, S.
    Varshney, Prachi
    Paul, Amit
    Jeyaraman, Sankar
    DALTON TRANSACTIONS, 2019, 48 (30) : 11345 - 11351